Building Energy Technologies

March, 2010

Contacts:
Dr. Ward TeGrotenhuis
ward.tegrotenhuis@pnl.gov
(509)372-2268
Pacific Northwest National Laboratory

Dr. Kevin Drost
kevin.drost@oregonstate.edu
(541) 713-1344
Oregon State University
Building Energy Technologies

<table>
<thead>
<tr>
<th>HVAC</th>
<th>Envelope</th>
<th>Appliances</th>
<th>Energy</th>
</tr>
</thead>
</table>
| - Heat-activated heat pumps
 - Expander/compressor cycle
 - Absorption cycle HP
 - Adsorption cycle HP
- Advanced heat transfer
 - Boiling heat transfer
 - Air-side heat transfer
- Advanced system concepts
 - CCHP: co-gen power and cooling
 - Compact distributed systems
 - Desiccant cooling
 - Concentrated solar cooling
 - Energy recovery ventilator | - Wavelength-selective coatings | - Heat pump dryer
 - Heat pump water heater | - PV – solution deposition
 - Fuel cell technologies
 - Energy storage - batteries |

- Established technology and/or capability
 - Has been proposed
 - Potential application of microtechnology
Heating, Ventilation and Air Conditioning
Heat-Activated Heat Pumps
Heating, Ventillation, and Air Conditioning (HVAC)
Heat-Activated Heat Pumps

• Use heat to provide cooling, heating, and power
 – Burn a fuel, such as H₂, natural gas, propane, or military fuel
 – Waste heat source—engine exhaust, fuel cell reject heat, etc…
 – Solar thermal—need >100°C, preferably >170°C

• Three systems under development
 – Expander/Compressor cycle—coupled ORC and vapor compression
 • Can provide power, cooling, and/or heating
 • 1.5 ton demonstration system currently in testing (U.S. Army)
 – Absorption heat pump—ammonia-water cycle
 • Can provide cooling and/or heating
 • 1.5 ton demonstration system scheduled for Summer, 2010 (U.S. Army)
 – Adsorption heat pump—ammonia carbon
 • Can provide cooling and/or heating
 • Rapid cycle thermal swing modeling showing COP_{cool} > 1.1 and COP_{heat} > 2.4
HVAC: Heat-Activated Heat Pump
Expander/Compressor Cycle

- **Concept**
 - Coupled organic Rankine cycle (ORC) and vapor compression.
 - Mechanical linkage of expander, compressor, and motor/generator allows for any combination of cooling, heating, or power.
 - Co-fired with heat and electric power for highly flexible load-following system.

- **Progress & Status**
 - System models project COP>1.1 at military conditions of 50°C ambient.
 - Developed high performance scroll expander technology (see below).
 - Incorporated advanced microchannel heat exchangers to improve performance.
 - Developed 5.3 kW (~1.5 tons) cooling system, currently in testing.

- **Point of Contact**
 - Prof. Rich Peterson, richard.Peterson@oregonstate.edu
HVAC: Expander/Compressor Cycle
Technology Development – Scroll Expanders

- Based on commercial, high volume production scroll technology.
- Measured near 100% volumetric efficiency in preliminary testing (no blow-by of working fluid).
- Measured isentropic efficiency and power output in test rig show efficiencies approaching 80%.

- Packaging and housing
 - Provides output shaft to measure power and to connect to compressor unit.
 - Fully sealed to allow pressurized working fluid.
HVAC: Heat-Activated Heat Pump
Expander-Compressor Cycle Heat Pump

- **Competition**
 - Commercial electric heat pumps
 - Absorption (solution) cycle heat pumps
 - No commercial heat pumps in U.S. for residential and smaller heat-activated cooling

- **Advantages**
 - High-efficiency, compact equipment
 - Flexible co-generation of power and cooling/heating
 - Utilize growing supply of natural gas reserves

- **Next steps**
 - Test system at designed outdoor temperature of 120 °F
 - Replace current oil heater loop with heat recovered from the exhaust of a diesel engine

- **Intellectual Property**
 - Patent application in final stages of review by the U.S. patent office.
 Most claims accepted.

Assembled 5.3-kW E/C system viewed from cool air discharge side

Dimensions are 34”x32”x24”
HVAC: Heat-Activated Heat Pump

Absorption Cycle Heat Pump

- **Concept**
 - Natural gas or solar heat pump for air conditioning, space heating, and water heating.
 - High energy efficiency obtained through extensive heat integration and heat recuperation—COP > 0.6 projected at military conditions (50°C ambient).
 - Compact system is achieved through microchannel absorber, desorber, and heat exchanger technologies.

- **Progress & Status**
 - 300W-scale breadboard used as test bead for new concepts and subscale prototype demonstration.
 - COP > 0.6 projected at military conditions of 50°C ambient temperature.
 - 5.3 kW system designed and being assembled for Summer 2010 demonstration.
 - Substantial investment being made in low-cost manufacturing.

- **Point of Contact**
 - Dale King, dale.king@pnl.gov

5kW-scale military system
HVAC: Heat-Activated Heat Pump
Absorption Cycle Heat Pump

➢ Competition
 ➢ Commercial electric heat pumps
 ➢ No commercial heat pumps in U.S. for residential and smaller heat-activated cooling

➢ Advantages
 ➢ High-efficiency, compact equipment
 ➢ Scalable from <1 ton up to commercial building
 ➢ Utilize growing supply of natural gas reserves
 ➢ Reduce electricity demand growth by offloading cooling during peak demand.

➢ Next steps
 ➢ Demonstrate 5.3 kW military system

➢ Intellectual Property
 ➢ Advance wick patent application pending.
 ➢ Integrated desorber patent application pending.
HVAC: Heat-Activated Heat Pump
Adsorption Cycle Heat Pump

- **Concept**
 - Natural gas or solar heat pump for air conditioning, space heating, and water heating.
 - High energy efficiency obtained through effective heat recuperation using a patented multi-bed system.
 - Compact system is achieved through:
 - integrated microchannel heat exchange for rapid thermal cycling, and
 - monolithic carbon sorbent having high capacity and high thermal conductivity.

- **Progress & Status**
 - Detailed models predicting compressor performance at specified conditions.
 - COP > 1 projected for residential cooling at standard conditions with >180°C heat.
 - COP > 2.4 projected for residential space heating with >180°C heat.
 - Progress made in aluminum joining for interleaved microchannel sorbent beds

- **Point of Contact**
 - Ward TeGrotenhuis, ward.tegrotenhuis@pnl.gov
HVAC: Heat-Activated Heat Pump
Adsorption Cycle Heat Pump

- **Competition**
 - Commercial electric heat pumps
 - Absorption (solution) cycle heat pumps
 - No commercial heat pumps in U.S. for residential and smaller heat-activated cooling

- **Advantages**
 - High-efficiency, compact equipment
 - Scalable from <1 ton up to commercial building
 - Utilize growing supply of natural gas reserves
 - Low corrosivity enabling aluminum construction
 - No solution pump

- **Next steps**
 - Bed fabrication and system demonstration
 - Multi-port valve development

- **Partners**
 - ATMI (carbon monolith sorbents)

- **Intellectual Property**
Heating, Ventilation and Air Conditioning
Advanced Heat Transfer
HVAC: Advanced Heat Transfer
Nano-Scale Coatings for Enhanced Boiling

- **Concept**
 - Nano-textured surfaces can enhance boiling heat transfer coefficient by about an order of magnitude.
 - Surface created by cost-effective micro-assisted nano-deposition (MAND™) process.

- **Progress & Status**
 - Proof-of-principle testing demonstrating higher heat transfer coefficient and higher critical heat flux.

- **Advantages**
 - Enhance HVAC coefficient of performance
 - Lighter, more compact evaporators

- **Next Step**
 - Demonstrate prototype scale device

- **Intellectual Property**
 - U.S. Pat. App. 12/709,266, Filed 2/2010 (OSU/PNNL)
 - U.S. Pat. App. (MAND™) (OSU)

- **Point of Contact**
 - Terry Hendricks, terry.hendricks@pnl.gov
HVAC: Advanced Heat Transfer

Air-side Heat Transfer

- **Concept**
 - Dramatically reduce gas heat transfer resistance

- **Progress and Status**
 - Demonstrated 44% reduction in gas heat transfer resistance at comparable pressure drop relative to straight fins.
 - Series resistance model indicates substantial further improvement possible.

- **Advantages**
 - Enhanced HVAC coefficient of performance
 - Lighter, more compact, higher performing evaporators and condensers

- **Next Steps**
 - Demonstrate prototype scale device
 - Second generation testing

- **Intellectual Property**
 - Invention disclosure filed

- **Point of Contact**
 - Ward TeGrotenhuis, ward.tegrotenhuis@pnl.gov

Figure:

![Graph showing thermal resistance vs. velocity for different channel types: Empty Channel, Straight Porous Fin, Half Corrugation Porous Fin.](image)
HVAC: Advanced Heat Transfer
Air-side Heat Transfer with 3-D Periodic Structures

- **Concept**
 - Use unique 3-D periodic microstructures to reduce gas heat transfer resistance by 45% compared to standard fin-plate structures.
 - Cost-effective manufacturing approaches identified.

- **Progress and Status**
 - Concept stage with in-house expertise

- **Advantages**
 - Enhanced HVAC coefficient of performance
 - Lighter, more compact, higher performing evaporators and condensers

- **Next Steps**
 - Proof-of-concept manufacturing
 - Demonstrate prototype-scale device
 - Develop intellectual property

- **Point of Contact**
 - Terry Hendricks, terry.hendricks@pnl.gov
Heating, Ventilation and Air Conditioning
Advanced Systems Concepts
Advanced System Concepts
CCHP: Co-Functional Power / Cooling Systems

Concept
- Produce combined power and cooling utilizing waste heat or by combusting fuel.
- Integrate a thermoelectric generator (TEG) power module as a topping cycle with a heat-activated cooling technology as a bottoming cycling.
- Heat coming from the TEG combined with hot exhaust gas is used to run the cooling system—effectively achieves 100% energy conversion efficiency in the TEG. Potentially saves 20 to 30% in fuel usage in forward deployed applications.

Progress and Status
- Being developed for battlefield applications, stationary and mobile, with various heat waste heat sources including diesel generator exhaust.
- Currently developing co-functional integration of 3 power & cooling technologies:
 - Advanced thermoelectric (TE) power system
 - Organic Rankine cycle (ORC) cooling system
 - Microchannel heat exchangers
- Currently testing a demonstration system designed for ~100 W power generation & 5.3 kW cooling capacity

Point of Contact
- Terry Hendricks, terry.hendricks@pnl.gov
Military Co-Functional Power / Cooling Systems

- TEG Power System Uses MicroChannel Heat Exchangers
 - Stainless Steel Air HX on Hot-Side
 - Aluminum R245fa HX on Cold-Side
 - 16-22 TE Modules

- ORC Boiler Uses MicroChannel Heat Exchangers
 - High-Temperature Bi$_2$Te$_3$ Modules
 - First-Ever 320°C Bi$_2$Te$_3$ Modules

- System Size
 - Microtechnology Enables Smaller System
 - Dimensions: 30” X 30” X 19”
 - Weight: ~100 kgs

- Next Steps
 - System Testing
Other ‘Drawing Board’ Concepts

- **Distributed Heat-activated Heat Pumps**
 - Distributed HVAC replaces a single large central HVAC unit with zonal or distributed HVAC units.
 - Advantages: reduces ducting and associated with central system cycling losses, enables zonal heating and cooling, lower building capital cost (no ducts will reduce a story height by 1 m)

- **Integrated Heat-activated Heat Pump and Desiccant Dehumidification**
 - Utilize waste heat from a heat-activated heat pump to regenerate the desiccant of a dehumidification system—heat pump topping cycle and desiccant bottoming cycle.
 - Advantages: No need to cool air to desired dew point allows higher evaporator temperature, higher heat pump Carnot efficiency, and increased energy efficiency.

- **Concentrated Solar HVAC**
 - Leverage MBI heat actuated HVAC technologies and partner to obtain affordable single-axis solar trough collectors leveraging low-cost technology currently marketed for solar heating.
 - Advantages: Increasing solar heat temperature increases HVAC efficiency and reduces HVAC and solar collector size and cost.