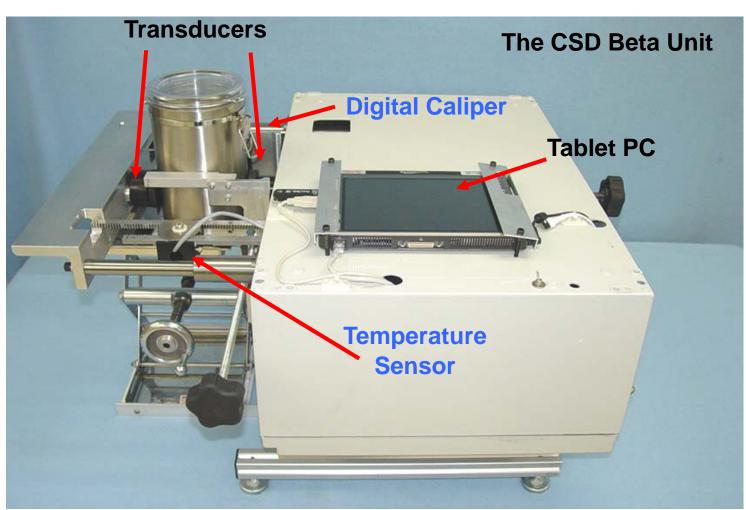
Fluid Forensics - Container Inspection

Ultrasonic Liquid Characterization Container Screening Device (CSD)

POC: Aaron Diaz

Pacific Northwest National Laboratory, Richland, WA. USA Phone: 509-375-2606 Email: aaron.diaz@pnl.gov

May 28, 2010


Topics of Discussion

- > Introduction
 - Historical Background
- Description of the Technology
 - Principles of Operation
 - Capabilities and Functionality
- > Applications
 - Other Embodiments
- Advantages of Ultrasound
- Recent Activities with CSD
- > Estimated Manufacturing Costs
- Conclusions and Future Work

The CSD Prototype (PNNL Version)

US Patent #7,246,522 issued in July, 2007

Introduction

Solutions &

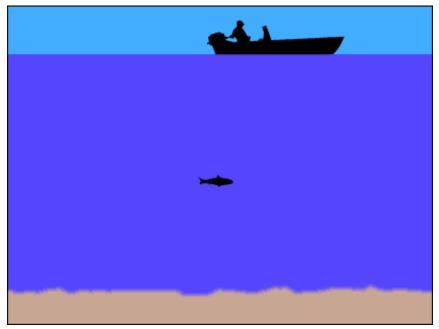
PRESIDENT PRESIDENT STATE OF S

- Border and Transportation Security
- Security at High Profile Venues and Events
- Emergency Preparedness and Response
- Vulnerabilities to Liquid-Based Homemade Explosives (HMEs)

- ➤ The CSD addresses container screening for liquid threats (chemical weapons agents, liquid explosives, precursors, etc.)
- An effective acoustics-based approach offers a non-invasive, nondestructive method for screening or characterizing liquids rapidly and reliably.

Introduction (Historical Background)

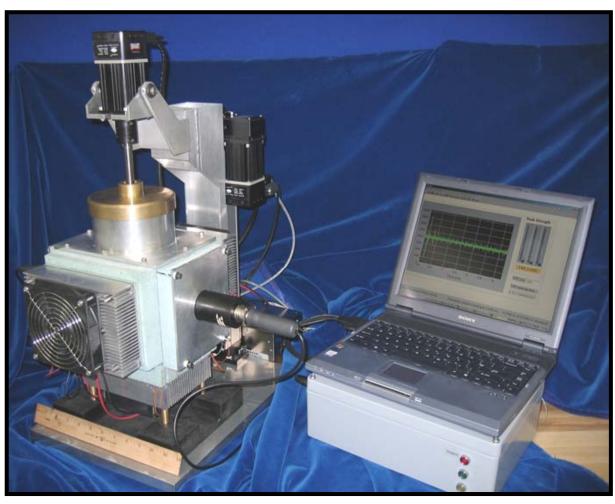
- Dr. Brian Eckenrode, FBI
- Counter-terrorism and Forensic Sciences Research Unit (CFSRU)
- Funding for the initial development effort was coordinated with others at the FBI in the Hazardous Materials Research Unit (HMRU)
- Initial project was funded for two years from 2004-2005 and again in 2005-2006
- Internal Battelle investment has also been made
- Currently the FBI has the initial prototype device and are testing it at FBI Academy Labs in Quantico, VA.



Description of the Technology

Principles of Operation (How does the CSD Work?)

- The term 'ultrasound' is commonly associated with things such as bat echolocation and fishfinders.
- Common theme: object detection
- The CSD uses ultrasound to accomplish Detection and Liquid Characterization.


Courtesy of Johnson Outdoors, Inc.

Courtesy of bats4kids.com

Principles of Operation (How does the CSD Work?)

Liquid Characterization System

Principles of Operation (How does the CSD Work?)

Liquid	Second Order Polynomial Fit; where X = Temperature in °F	R ² Value
50% Acetic acid in water solution	y = -0.0033x2 - 0.373x + 1535.5	0.9995
Toluene (Toluel - commercial brand)	$y = 0.0026x^2 - 2.8287x + 1509.6$	0.999
Chloroform	$y = 0.001x^2 - 2.046x + 1144.660$	1.000
Xylene	$y = 0.002x^2 - 2.634x + 1515.228$	1.000
Paint Thinner (commercial brand)	$y = 0.0014x^2 - 2.4731x + 1457.7$	1.000
Water	$y = -0.011x^2 + 3.098x + 1322.839$	1.000
Gasoline Additive (STP - commercial brand)	$y = 0.0011x^2 - 2.3835x + 1484.7$	1.000
Acetone (commercial brand)	$y = 0.0017x^2 - 2.7694x + 1371.7$	0.999
Ethanol	$y = 0.001x^2 - 2.107x + 1304.761$	0.999
Methanol	$y = 0.001x^2 - 2.102x + 1261.274$	1.000

Example of Liquids Database (Sound Speed and Temperature)

Capabilities and Functionality

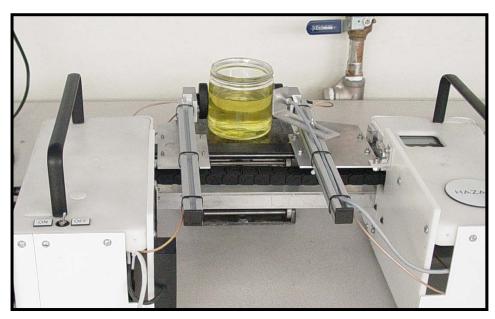
CSD Provides the Capability to:

- Detect Contraband, Objects, Anomalies, or Hidden Compartments in Liquid-filled Containers, Pipes or Vessels
- Rapidly Sort Liquid Types (and many Solids) into Groups of Like and Unlike (or Threat versus Non-threat)
- Classify/Characterize Liquids in Sealed Containers, Pipes or Vessels (and some un-contained solid materials as well)
- Determine Liquid Fill Level in a Sealed Container or Vessel

Potential Applications

(Liquid Characterization, Monitoring and Detection)

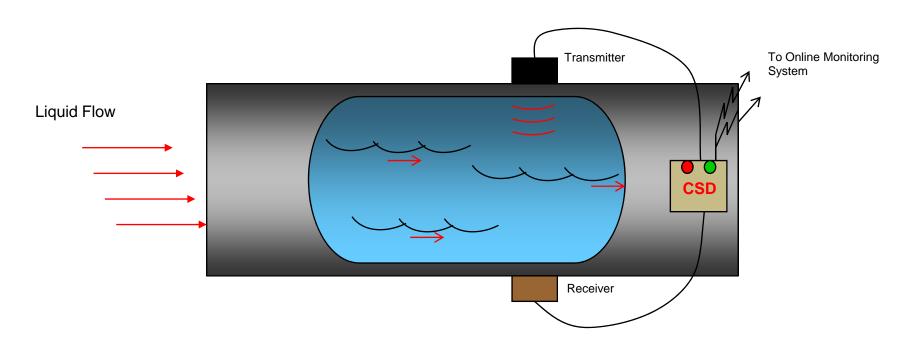
- Food Processing and Quality Control
- Chemical and Industrial Liquid Process Streams
- Pharmaceutical Liquid Process Streams
- Petro-Chemical, Oil and Gas Liquid Process Streams
- Homeland Security and National Security Applications
- Law Enforcement Intelligence Community (Liquid Forensics)
- Military Applications
- Transportation Security (Airport Screening)
- Inventory Control and Validation
- Hazardous Materials (HAZMAT) Assessments
- Fuel Compliance Evaluations
- Environmental Applications and Waste Management


Potential Applications (Liquid Characterization, Monitoring and Detection)

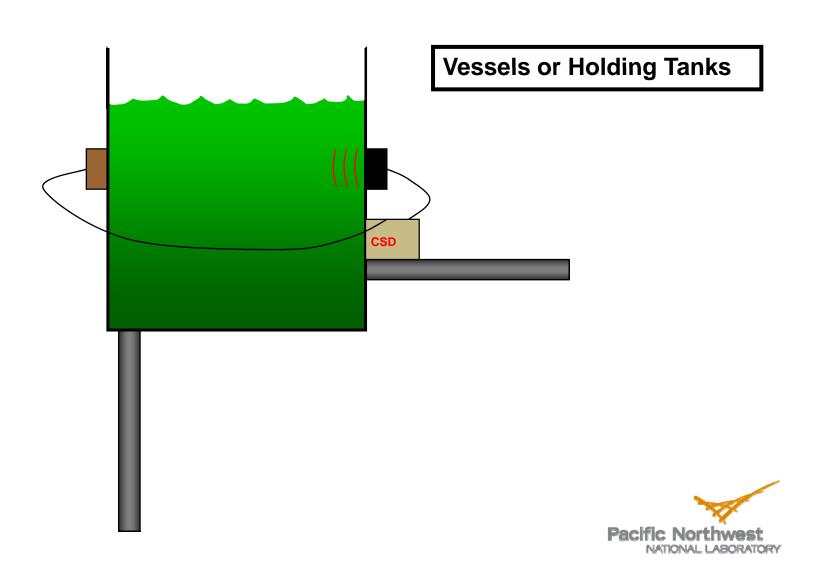
Food Processing/Quality Control Consumer Applications:

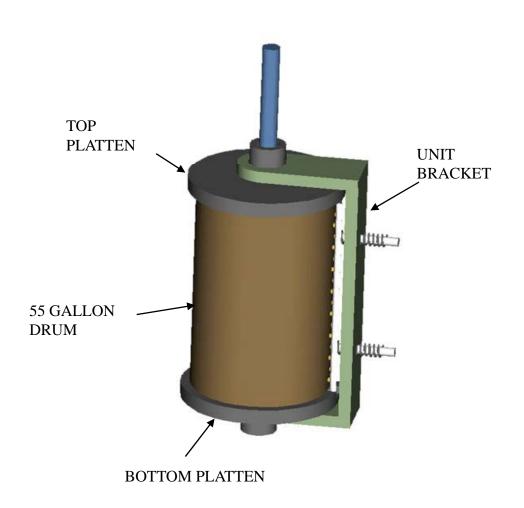
- Tomato products (consistency)
- Steak sauce (consistency)
- Mustard (consistency)
- Pudding (consistency)
- Gelatin (degree of gelation)
- Cake/brownie/cookie/bread mixtures (detection of missing ingredients)
- Shampoo (consistency)
- Ground beef (%fat)
- Chicken (anomaly/bone detection)
- Cereal rice and grains (degree of cooking)
- Potatoes (degree of cooking)
- Beer (degree of fermentation)
- Milk and diet shakes (septic vs. good)
- Liquid holding tank fill level (inventory control)
- Container inspection (inventory control, anomaly detection)

Current Bottle Screening Configurations

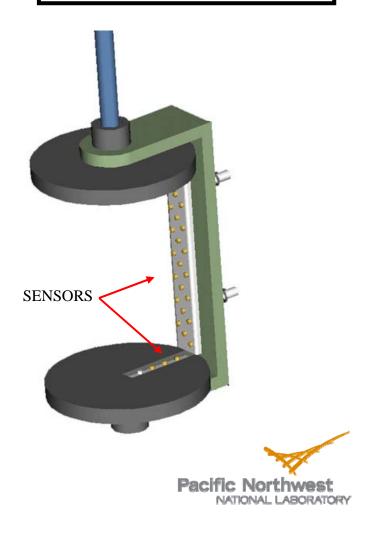


FBI Device PNNL Device

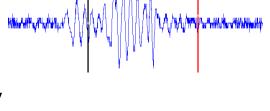



Pipelines

Process Stream Monitoring

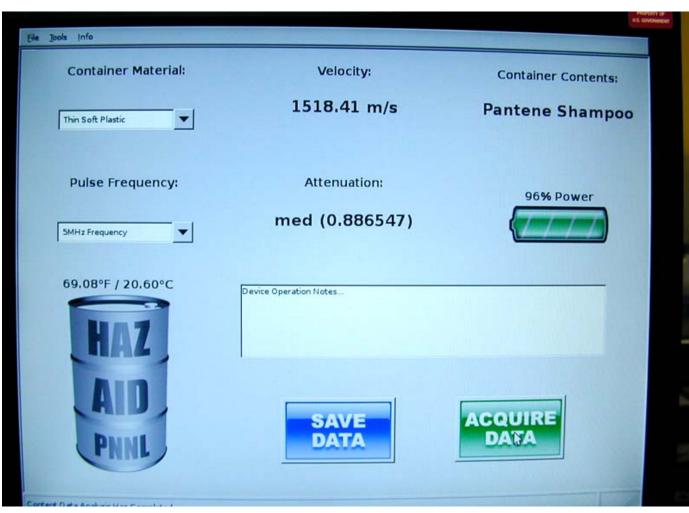


Containers and Drums



Advantages of Ultrasound (Why Use Ultrasound and What is the Value Added?)

- Safe to operate and requires access to only one surface
- Non-invasive and non-intrusive
- User-friendly and reduced level of complexity
 - Technical perspective (mature technology)
 - Operational perspective (training and use)



- Rapid, real-time response
- Penetrating power (larger vessels or attenuative materials)
- Cost effective (equipment)
 - Relative to X-ray, Laser-based systems and other non-invasive approaches
 - System can be reduced in size relatively easily w/low power consumption
- Wide variety of liquids and solids applicability
- Volumetric examinations of containers

Recent CSD Activities (Current User Interface - Research Purposes Only)

Recent CSD Activities

Liquid Category	Total Number of Liquids in Category	Examples of Liquids
Hair Care Products	14	Shampoos, Conditioners, Gels, etc.
Automotive Products	18	Octane booster, Antifreeze, etc.
Liquors	7	Whiskey, Scotch, Liquor
Toiletries	8	Colognes, Perfumes, After Shave, Pre Shave
Cleaners	22	Floor Cleaners, Wood Cleaners, Detergents, etc.
Medicine	12	Cold Medicines, Allergy Medicines, Children's Medicines
Food	57	Juices, Syrups, Vinegars, Marinades, etc.
Skin Care Products	18	Body Wash, Lotions, Facial Products, Body Oils, etc.
Threat Liquids and Flammables	24	Fuel, Liquid Explosives, Acids, etc.
TOTAL NUMBER OF LIQUIDS	180	24 Threat Liquids, 156 Non-Threat (Benign) Liquids

Driving Factors that Impact Estimated Device Costs

- Application (fixed geometry such as a pipe versus varying geometries) translating into different physical form requirements, algorithm requirements and electronics requirements.
- Measurement Speed and number of sensors required for application (translates into different algorithm and electronics requirements)
- Accommodating environmental variables (applications requiring measurements in high temp or pressure environments), etc. Possibly requiring mil-spec testing and validation.
- ➤ Database requirements (applications focused on a small set of liquids versus applications requiring a much larger set of liquids)
- ➤ Market need (fields of use where only 10's or 20's or 30's of these devices are needed, versus 1000's)
- ➤ End-User operational requirements (such as red-light/green-light operation versus a more select or customized user interface)

ROM Estimated Device Cost Range: \$7K to \$40K per Unit

Conclusions and Future Work

- Developing Additional Acoustic Signatures
- Decreasing Measurement Variability
- Addressing Measurement Physics Issues
- Incorporating Complementary Measurement Modalities
- Incorporate advanced statistically-based analytical and decision algorithms

The CSD is Currently Available for Licensing Across All Fields of Use.

