US 20130036311A1

a2y Patent Application Publication (o) Pub. No.: US 2013/0036311 Al

a9 United States

Akyol et al.

43) Pub. Date: Feb. 7, 2013

(54) INTELLIGENT SENSOR AND CONTROLLER
FRAMEWORK FOR THE POWER GRID

(75) Inventors: Bora A. Akyol, Richland, WA (US);
Jereme Nathan Haack, West Richland,
WA (US); Philip Allen Craig, JR., West
Richland, WA (US); Cody William
Tews, Richland, WA (US); Anand V.
Kulkarni, Richland, WA (US); Brandon
J. Carpenter, Kennewick, WA (US);
Wendy M. Maiden, Pasco, WA (US);
Selim Ciraci, Richland, WA (US)

(73) Assignee: Battelle Memorial Institute
(21) Appl. No.: 13/204,606
(22) Filed: Aug. 5, 2011

Publication Classification

(51) Int.CL

HO4L 9/00 (2006.01)

(52) US.CL oot 713/189

(57) ABSTRACT

Disclosed below are representative embodiments of methods,
apparatus, and systems for monitoring and using data in an
electric power grid. For example, one disclosed embodiment
comprises a sensor for measuring an electrical characteristic
of a power line, electrical generator, or electrical device; a
network interface; a processor; and one or more computer-
readable storage media storing computer-executable instruc-
tions. In this embodiment, the computer-executable instruc-
tions include instructions for implementing an authorization
and authentication module for validating a software agent
received at the network interface; instructions for implement-
ing one or more agent execution environments for executing
agent code that is included with the software agent and that
causes data from the sensor to be collected; and instructions
for implementing an agent packaging and instantiation mod-
ule for storing the collected data in a data container of the
software agent and for transmitting the software agent, along
with the stored data, to a next destination.

N

AGENT FRAMEWORK 500 AGENT
EXECUTION
ENVIRONMENT
AGENT PACKAGING 540
DIRECTORY SERVICES
AND INSTANTIATION
520
o
A
in % > PYROVER
- | T
(o [T}
& CONFIGURATION %
= POLICIES 514 TRUST STORE 512 @
%2} O
& z | > JAVA/IADE
Z T N 544
3 X
< ||AUTHENTICATION AND S
& || AUTHORIZATION 510 =
; —
o ¢ :> BINARY 546
- <1
RESOURCE MONITOR
530 LOCAL STORE 526

TO OPERATING
SYSTEM

Patent Application Publication Feb. 7,2013 Sheet 1 0of 18 US 2013/0036311 A1

100

N

COMPUTING ENVIRONMENT 100 COMMUNICATION
,,, CONNECTION(S) 170

INPUT DEVICE(S) 150

PROCESSING MEMORY 120

UNIT 110

OUTPUT DEVICE(S) 160

STORAGE 140

o 0 0D D e 6 8 WD WD DS e T D D o e 3 W D 4D e O D

.
3
3
I
-

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SOFTWARE 180 FOR IMPLEMENTING SOFTWARE
FRAMEWORK AND/OR AGENT APPLICATIONS

FIG. 1

Patent Application Publication Feb. 7,2013 Sheet2 of 18 US 2013/0036311 A1

200

Ny

4 ™ s
UTILITY SOI 210
" SUBSTATION SOI 212 h
" FEEDER SOI 214 ™ THIRD
PARTY
sol
" CUSTOMER PREMISES 216 220
< N
¥
Y o
v
. J
M o . &

FIG. 2

Patent Application Publication Feb. 7,2013 Sheet 3 of 18 US 2013/0036311 A1

P T L L T YL YL Ty

FRAMEWORK 310

AGENT AGENT
APPLICATION APPLICATION

332 334

OTHER

APPLICATIONS 336 AGENT FRAMEWORK 330

OPERATING SYSTEM 320

BASE HARDWARE PLATFORM 312

P Ly R YT T LY T
N
A L A S R R R A A A XA S S A R L AR S R X K

.

DIGITAL AND ANALOG NETWORK
SENSING/CONTROL COMMUNICATION
INTERFACES 314 INTERFACES 316

FIG. 3

Patent Application Publication Feb. 7,2013 Sheet 4 of 18 US 2013/0036311 A1

AGENT FRAMEWORK 400

AGENT AGENT
APPLICATION e ee APPLICATION
480 482

AGENT INSTANTIATION AND
MOBILITY 460

AGENT EXECUTION ENVIRONMENT 470

AGENT AUTHENTICATION

AND AUTHORIZATION 440 RESCURCE SCHEDULING AND GUARANTEES 450

AGENT DISCOVERY, COOPERATION AND COLLABORATION 430

AGENT NETWORK COMMUNICATION 420

BASE HARDWARE DIRECT
INTERFACE 410

4p 9p

OPERATING SYSTEM INTERFACE 412

TO OPERATING TO HARDWARE
SYSTEM

FIG. 4

Patent Application Publication Feb. 7,2013 Sheet 5 of 18 US 2013/0036311 A1

AGENT FRAMEWORK 500 AGENT
EXECUTION
ENVIRONMENT
DIRECTORY SERVICES | | AGENT PACKAGING 540
520 AND INSTANTIATION
o 522
o
o A > PYROVER
z <Y 0
o [V
= CONFIGURATION 2
’__
z POLICIES 514 TRUST STORE 512 "
7] O
3 z | >JAVA/JADE
> T N 544
7 &
¥ | |AUTHENTICATION AND 5
& || AUTHORIZATION 510 %
L < >B[NARY546

RESOURCE MONITOR
530

LOCAL STORE 526

TO OPERATING
SYSTEM

FIG.5

Patent Application Publication Feb. 7,2013 Sheet 6 of 18 US 2013/0036311 A1

600

52}
=
o

JJJIJJJ)]

= = N = S = g

~
J

{

DESTINATION

)
=
N

SOURCE

o
[HEN
B0

AN

INITIATOR

=)
ity
123

CREATOR

AN A

AGENT CODE

N
]
o

AN

IMMUTABLE DATA

o)
NS
N

MUTABLE DATA

€))]
o]
£

VALIDATION PAYLOAD

o
(3]
o)}

EXECUTION CONTRACT

FIG. 6

Patent Application Publication Feb. 7,2013 Sheet 7 0of 18 US 2013/0036311 A1

700\
i CREATOR 720
; CREATE AGENT 710 ;
i INITIATOR 722 ;
; TASK AGENT 712 :
§ SEND AGENT 714 :

FIG. 7

Patent Application Publication

800

R

Feb. 7,2013 Sheet 8 of 18

US 2013/0036311 A1l

810
U

DEFINE AGENT TYPE

l

812

r

DEFINE AGENT ACTIONS

l

814
U

DEFINE RESOURCE
REQUIREMENTS
WITH
EXECUTION CONTRACT

l

816
W

SIGN WITH CREATOR
SIGNATURE

l

818 \<

NEW AGENT)

FIG. 8

Patent Application Publication Feb. 7,2013 Sheet 9 of 18 US 2013/0036311 A1

900

¥

910
\/ AGENT /

912

iS
CREATOR

SIGNATURE

VALID?

DISCARD)

N FIG. 9A

916

IS
AGENT FROM
ANOTHER
SOl

918 X VALIDATE SOI

AUTHENTICATION
AND
AUTHORIZATION

v

ADD ADDITIONAL

920 TRUST INFORMATION
\ TO IMMUTABLE

LUGGAGE

| >

922 A 4
LOOKUP PATH

v

PAYLOAD
CONSTRUCTION

v

N
N
926
\(TRANSPORT)

Patent Application Publication

960 +
“X&<: AGENT RECEIVED :}

< AGENTCODE
e VALD?

966 ~ o g
< INITIATOR
e VALID?

< INITIATOR |
S\ AUTHR'ZD?

974 -~

s
<. IMMUTABLE DATA
“CAUTHENTIC? -

980

> IS .
< MUTABLE DATA
“AUTHENTIC?

EXTRACT DATA
(END)

984
U

Feb. 7,2013 Sheet 10 of 18

US 2013/0036311 A1l

950

¥

DISCARD)

DISCARD)

DISCARD)

DISCARD >

DISCARD)

FIG. 9B

Patent Application Publication Feb. 7,2013 Sheet 11 of 18 US 2013/0036311 A1

1000

1010
AGENT

VALIDATE AGENT
1012 \ AUTHENTICATION
AND
AUTHORIZATION

1014

IS
AGENT UPGRADE
AGENT?

1018

h 4

INITIATE AGENT
INITIATE UPGRADE
EXECUTION)

FIG. 10A

Patent Application Publication Feb. 7,2013 Sheet 12 0of 18 US 2013/0036311 A1

1050

1060 ‘ EXECUTION
COMPLETE

1062 ~_ COLLECT
INFORMATION

l

1064
U LOOKUP PATH

l

1066 —~_| PAYLOAD
CONSTRUCTION

Y

1068
i TRANSPORT

FIG. 10B

Patent Application Publication Feb. 7,2013 Sheet 13 0of 18 US 2013/0036311 A1

1100

AGENT ON THIS
PLATFORM?

DISCARD)

SNAPSHOT RUNNING
AGENT, THEN
TERMINATE

1116

HAS AGENT
TERMINATED?

TERMINATE
AGENT

1120
"_| UPGRADE AGENT
AND REINITATE

1122

HAS AGENT
STARTED?

RESTORE FROM
SNAPSHOT

(END UPGRADE)

FIG. 11

Patent Application Publication Feb. 7,2013 Sheet 14 0of 18 US 2013/0036311 A1

1200

(START VALIDATION) /

1210

1212

IS
AGENT SIGNATURE

RETURN lNVALlD)
VALID?

1214

iS
INITIATOR

RETURN lNVALlD)
VALID?

1218

IS
INITIATOR
AUTH'RZD?

RETURN lNVALlD)

1222

IS CONFIG. DATA RETURN .NVAUD)

AUTHENTIC? N
Y
1226
1228
{S MUTABLE DATA
AUTHENTIC? N RETURN INVALID)
Y
1230 1232

ARE
RESOURCES

RETURN INVALID)
AVAILABLE?

Y

(RETURN VALID) FlG. 12

Patent Application Publication Feb. 7,2013 Sheet 15 0f 18 US 2013/0036311 A1

1300

1310
"\ RECEIVE ENERGY GOAL

| FIG. 13A

1311 = _| RECEIVE DATA FROM OTHER
HOMES

A4

1312 \ SUBTRACT BASE LOAD FOR
HOMES

i

1314 —~__|sUBTRACT ENERGY USE FROM
HOMES WITH TOKEN

1316

ENERGY
REMAINING?

1317 ™_| RUN APPLIANCE(S) IF HOUSE
HAS TOKEN, DECREMENT
TOKEN

Patent Application Publication

LIST HOUSES WITH
NO TOKEN

1320

ANY
HOUSE < LOW
ATER MARKZ

Feb. 7,2013 Sheet 16 of 18

US 2013/0036311 A1l

FIG. 13B

ANY
HOUSE < TANK

SELECT HOUSE CLOSEST
TO TANK ENERGY GOAL

FROM LIST

ENERGY
REMAINING?

336

AGENT’S
HOUSE?

SUBTRACT ENERGY
NEEDS OF SELECTED
HOUSE

<

A 4

1322 | 1334
SELECT HOUSE FARTHEST \U
FROM LOW WATER MARK
1324 1
Y
ﬁzs
CLAIM
TOKEN
1328 N\| SUBTRACT ENERGY 1340
NEEDS OF SELECTED \
HOUSE
A 4
1329
| REMOVE HOUSE 1342

REMOVE HOUSE
FROM LIST

1

344

ENERGY
REMAINING?

Patent Application Publication Feb. 7,2013 Sheet 17 of 18 US 2013/0036311 A1

1410 \

1420 \

1430 l

Cooperative

FIG. 14

Patent Application Publication Feb. 7,2013 Sheet 18 of 18 US 2013/0036311 A1

1500

N

DISTRIBUTION
SUBSTATION FOR
LOCAL FEEDER
1510

US 2013/0036311 Al

INTELLIGENT SENSOR AND CONTROLLER
FRAMEWORK FOR THE POWER GRID

ACKNOWLEDGMENT OF GOVERNMENT
SUPPORT

[0001] This invention was made with Government support
under Contract DE-ACO05-76RLO1830 awarded by the U.S.
Department of Energy. The Government has certain rights in
the invention.

FIELD

[0002] This application relates generally to the field of
power grid monitoring and control.

BACKGROUND

[0003] The number of sensors and controllers connected to
the electric power system is expected to grow by several
orders of magnitude over the next several years. However, the
information networks that are currently used to transmit and
analyze data on the system are ill-equipped to handle the
volume of communications resulting from the increased
number of sensors. For example, the current information net-
works are incapable of delivering large amounts of data col-
lected by the sensors in a predictable, time-effective, and
reliable manner.

[0004] Without the ability to manage and use data from the
sensors, the deployment of sensors into the power grid (e.g.,
phasor measurement sensors into the transmission system
and smart meters into the distribution system) will not result
in the desired improvements. For example, conventional
information networks for power system are incapable of man-
aging two-way power flow, thus hampering efforts to fully
utilize distributed generation capabilities (e.g., power genera-
tion from home solar panels, electric vehicles, and the like).
[0005] Accordingly, improved systems, methods, and
apparatus for managing and using data in an electric power
grid are desired.

SUMMARY

[0006] Disclosed below are representative embodiments of
methods, apparatus, and systems for monitoring and using
data in an electric power grid. Certain embodiments, for
example, bring intelligence from the control rooms of'a utility
to devices located at or near customer premises. The applica-
tion of the disclosed embodiments to electrical utilities and to
apower grid should not be construed as limiting, however, as
the disclosed technology is more generally applicable to other
environments in which agent-based data communications are
desired.

[0007] Among the exemplary embodiments disclosed
herein is a method that comprises receiving data representing
a software agent, the data including data indicating a crypto-
graphic signature for the software agent, data indicating
resource requirements for executing the software agent, and
executable code for performing an agent task; determining
that the executable code is authorized for execution; and
executing the executable code on a processor, thereby per-
forming the agent task. In this exemplary method, the deter-
mining that the executable code is authorized for execution
comprises verifying that the software agent is authorized
using the data indicating the cryptographic signature, and
verifying that sufficient computing resources are available for
the software agent using the data indicating the resource

Feb. 7, 2013

requirements. In certain implementations, the data represent-
ing the software agent further comprises data indicating an
identity of an initiator of the software agent, and the act of
determining that the executable code is authorized for execu-
tion further comprises verifying that the initiator is a recog-
nized and authorized initiator using the data indicating the
identity of the initiator of the software agent. In some imple-
mentations, the data representing the software agent further
comprises data indicating a cryptographic signature for con-
figuration data of the software agent (the configuration data
indicating parameters for the executable code and destination
nodes for the software agent), and the act of determining that
the executable code is authorized for execution further com-
prises verifying that the configuration data of the software
agent has not been altered using the cryptographic signature
for the configuration data. In certain implementations, the
data representing the software agent further comprises data
indicating a cryptographic signature for mutable data of the
software agent, and the act of determining that the executable
code is authorized for execution further comprises verifying
that the mutable data of the software agent has not been
altered using the cryptographic signature for the mutable
data. In some implementations, the method is performed by
computing hardware in communication with one of (a) a
sensor for measuring an electrical parameter of a power line
of a power grid, (b) a sensor for measuring an electrical
parameter of a distributed generator coupled to the power
grid, (¢) an electrical meter for a household coupled to the
power grid, (d) a control unit for one or more household
electrical devices that receive power from the power grid, or
(e) a control unit for controlling power distribution on the
power grid. In certain implementations, the act of executing
the executable code comprises instantiating an instance of an
agent execution environment, and executing the executable
code in the agent execution environment. In some implemen-
tations, the agent task is to update agent code for an existing
agent. In certain implementations, the method further com-
prises receiving data from a sensor as a result of executing the
executable code on the processor; storing the collected data in
a mutable data container of the software agent; and transmit-
ting the software agent, along with the collected data, to anext
destination in a manner in which the mutable data container is
protected from tampering during transmission. The sensor in
such implementations can be configured to measure an elec-
trical characteristic of a power line, a distributed generator, or
an electrical device.

[0008] Another exemplary embodiment disclosed herein is
a system comprising a sensor for measuring an electrical
characteristic of a power line, electrical generator, or electri-
cal device; a network interface; a processor; and one or more
computer-readable storage media storing computer-execut-
able instructions. In this embodiment, the computer-execut-
able instructions include instructions for implementing an
authorization and authentication module for validating a soft-
ware agent received at the network interface; instructions for
implementing one or more agent execution environments for
executing agent code that is included with the software agent
and that causes data from the sensor to be collected; and
instructions for implementing an agent packaging and instan-
tiation module for storing the collected data in a data con-
tainer of the software agent and for transmitting the software
agent, along with the stored data, to a next destination. In
certain implementations, the sensor is a phasor measurement
sensor. In some implementations, the system is part of an

US 2013/0036311 Al

electrical meter for a household on a power grid, or a control
unit for one or more household electrical devices that receive
power from the power grid. In further implementations, the
system is part of a control unit in communication with a
power grid. In certain implementations, the one or more com-
puter-readable media further store data indicative of crypto-
graphically verifiable identities, the data indicative of cryp-
tographically verifiable identities being used by the
authorization and authentication module to validate the soft-
ware agent. In some implementations, the one or more com-
puter-readable media further store data indicative of a net-
work identity for the next destination, the network identity
being used by the agent packaging and instantiation module
to transmit the software agent to the next destination. In
certain implementations, the one or more computer-readable
media further store instructions for controlling an informa-
tion exchange bus that facilitates communication to the one or
more agent execution environments. In some implementa-
tions, the instructions for implementing the one or more agent
execution environments include instructions for executing an
agent written in a first language in a first execution environ-
ment and instructions for executing an agent written in a
second language in a second execution environment difterent
from the first execution environment.

[0009] Another of the exemplary embodiments disclosed
herein is a method that comprises loading data defining an
uninitiated software agent, the data defining the uninitiated
software agent comprising executable code for performing an
agent task; identifying one or more destination nodes to
which the software agent is to be transmitted; generating data
defining an initiated software agent, the data defining the
initiated software agent comprising immutable data that indi-
cates identities of the one or more destination nodes and
further indicates configuration parameters for the agent task,
data indicating an identity of an initiator of the initiated soft-
ware agent, data indicating an cryptographic signature of the
initiated software agent, and the executable code for perform-
ing the agent task. The method further comprises transmitting
the data defining the initiated software agent to one of the one
or more of the destination nodes. In certain implementations,
the method is performed by computing hardware associated
with a feeder in a power grid and the one or more destination
nodes are nodes corresponding to homes powered by the
feeder. In some implementations, the data defining the unini-
tiated software agent includes data indicating a cryptographic
signature of the uninitiated software agent signed by a creator
of the uninitiated software agent, and the method further
comprises determining that the uninitiated software agent is
authorized based at least in part on the cryptographic signa-
ture of the uninitiated software agent signed by the creator. In
certain implementations, the data defining the uninitiated
software agent and the data defining the initiated software
agent include data indicating resource requirements for
executing the software agent. In some implementations, one
or more of the destination nodes are communicatively
coupled to (a) a sensor for measuring an electrical parameter
of'a power line of a power grid, (b) a sensor for measuring an
electrical parameter of a distributed generator coupled to the
power grid, (c) an electrical meter for a household coupled to
the power grid, (d) a control unit for one or more household
electrical devices that receive power from the power grid, or
(e) a control unit for controlling power distribution on the
power grid. In certain implementations, the method is per-
formed by computing hardware associated with a first hier-

Feb. 7, 2013

archical level of a power grid, and the data defining the
uninitiated software agent is sent from computing hardware
associated with a second hierarchical level of the power grid
at a higher level than the first hierarchical level. In some
implementations, the data defining the uninitiated software
agent includes data indicating a cryptographic signature for
the uninitiated software agent generated by the computing
hardware associated with the second hierarchical level of the
power grid, and the method further comprises determining
that the uninitiated software agent is authorized based at least
in part on the cryptographic signature for the uninitiated
software agent generated by the computing hardware associ-
ated with the second hierarchical level of the power grid.

[0010] A further exemplary embodiment disclosed herein
is a method that comprises generating data defining an unini-
tiated software agent, the data including executable code for
performing an agent task, data indicating an identity of a
creator of the uninitiated software agent, and data indicating
computing resources required to perform the agent task; and
storing the uninitiated software agent on one or more com-
puter-readable storage media. In some implementations, the
data defining an uninitiated software agent further includes
data indicating a cryptographic signature signed by the cre-
ator of the uninitiated software agent. In certain implementa-
tions, the agent task is performed at least in part by (a) a sensor
for measuring an electrical parameter of a power line of a
power grid, (b) a sensor for measuring an electrical parameter
of a distributed generator coupled to the power grid, (c) an
electrical meter for a household coupled to the power grid, (d)
a control unit for one or more household electrical devices
that receive power from the power grid, or (e) a control unit
for controlling power distribution on the power grid.

[0011] Another of the exemplary embodiments disclosed
herein is a method that comprises transmitting an outgoing
software agent to one or more nodes on a network, wherein at
least one of the nodes is communicatively coupled to (a) a
sensor for measuring an electrical parameter of a power line
of a power grid, (b) a sensor for measuring an electrical
parameter of a distributed generator coupled to the power
grid, (¢) an electrical meter for a household coupled to the
power grid, (d) a control unit for one or more household
electrical devices that receive power from the power grid, or
(e) a power distribution control device coupled to the power
grid, and wherein the outgoing software agent includes
resource information indicating resources used to execute the
software agent and a cryptographic signature for the software
agent; and, after the transmission of the outgoing software
agent, receiving an incoming software agent that includes
data collected from the one or more nodes on the network. In
some implementations, the outgoing software agent com-
prises executable code for collecting data indicative of an
operational state of one or more distributed generators
coupled to the power grid, and the incoming software agent
includes the data indicative of the operational state of the one
or more distributed generators. In certain implementations,
the outgoing software agent comprises executable code for
collecting data indicative of an operational state of one or
more power lines coupled to the power grid, and the incoming
software agent includes the data indicative of the operational
state of the one or more power lines. In some implementa-
tions, the outgoing software agent comprises executable code
for collecting data indicating one or more of an identity,
location, or electrical characteristics of electrical devices
associated with each of the one or more nodes, and the incom-

US 2013/0036311 Al

ing software agent includes the data indicating one or more of
the identity, location, or electrical characteristics of the elec-
trical devices associated with each of the one or more nodes.
In certain implementations, the outgoing software agent com-
prises executable code for collecting data indicative of a fault
location among the one or more nodes, and the incoming
software agent includes the data indicative of the fault loca-
tion among the one or more nodes.

[0012] Another of the exemplary methods disclosed herein
is a method that comprises receiving information indicative
of'an energy use goal for one or more distribution power lines
in a power network for a time period; receiving information
from one or more remote households coupled to respective
ones of the distribution power lines, the information from the
one or more remote households comprising information indi-
cating an energy demand priority level for each respective
remote household; determining an energy demand priority
level for a local household; and determining whether to acti-
vate one or more electrical devices at the local household
during the time period based at least in part on the information
indicative of the energy use goal, the information indicating
the energy demand priority level for each respective remote
household, and the energy demand priority level for the local
household. In certain implementations, the determination of
whether to activate the one or more electrical devices at the
local household during the time period is made using a set of
rules that is common among the local household and the one
or more remote households. In some implementations, the set
of rules allows a household with a higher energy demand
priority level to draw additional power before a household
with a lower energy demand priority level. In certain imple-
mentations, the determination of whether to activate the one
or more electrical devices at the local household during the
time period is made using a set of rules that is defined in
executable code sent to the local household using a software
agent. In some implementations, the information received
from the one or more remote households is stored as datain a
software agent that is sent by a respective one of the one or
more household to the local household via a network. In
certain implementations, the method further comprises selec-
tively activating the one or more electrical devices at the local
household based on the determination of whether to activate
the one or more electrical devices at the local household
during the time period. In some implementations, the method
further comprises transmitting information indicative of the
energy demand priority level for the local household to the
one or more remote households using a software agent.

[0013] Embodiments of the disclosed methods can be per-
formed using computing hardware, such as a computer pro-
cessor, application specific integrated circuit, or program-
mable logic device. For example, embodiments of the
disclosed methods can be performed by software stored on
one or more non-transitory computer-readable media (e.g.,
one or more volatile memory components (such as DRAM or
SRAM) or nonvolatile memory or storage components (such
as hard drives)). Such software can be executed on a single
computer or on a networked computer (e.g., via the Internet,
a wide-area network, a local-area network, a client-server
network, or other such network). Embodiments of the dis-
closed methods can also be performed by specialized com-
puting hardware (e.g., one or more application specific inte-
grated circuits (“ASICs”) or programmable logic devices
(such as field programmable gate arrays (“FPGAs”™)) config-
ured to perform any of the disclosed methods). Additionally,

Feb. 7, 2013

any intermediate or final result created or modified using any
of the disclosed methods can be stored on a non-transitory
storage medium (e.g., volatile memory or storage compo-
nents (such as DRAM or SRAM) or nonvolatile memory or
storage components (such as hard drives)) and are considered
to be within the scope of this disclosure. Furthermore, any of
the software embodiments (comprising, for example, com-
puter-executable instructions which when executed by a com-
puter cause the computer to perform any of the disclosed
methods), intermediate results, or final results created or
modified by the disclosed methods can be transmitted,
received, or accessed through a suitable communication
means.

[0014] The foregoing and other objects, features, and
advantages of the invention will become more apparent from
the following detailed description, which proceeds with ref-
erence to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG.1 is a schematic block diagram of a computing
environment that can be used to implement embodiments of
the disclosed technology.

[0016] FIG. 2 is a schematic block diagram illustrating an
exemplary hierarchy of scopes of influence according to
which agents in embodiments of the disclosed technology are
organized.

[0017] FIG. 3 is a schematic block diagram illustrating an
overall architecture of an exemplary software framework in
embodiments of the disclosed agent-based system.

[0018] FIG. 4 is a schematic block diagram illustrating
components of an exemplary intelligent sensor or controller
agent framework used in embodiments of the disclosed agent-
based system.

[0019] FIG. 5 is another schematic block diagram illustrat-
ing components of an exemplary intelligent sensor or control-
ler agent framework used in embodiments of the disclosed
agent-based system.

[0020] FIG. 6 is a schematic block diagram illustrating
components of an exemplary agent transport payload for
agents used in embodiments of the disclosed agent-based
system.

[0021] FIG. 7 is a schematic block diagram illustrating
exemplary basic agent operations performed by a creator and
an initiator in embodiments of the disclosed agent-based sys-
tem.

[0022] FIG. 8 is a flow chart of an exemplary method for
creating an agent according to an embodiment of the dis-
closed technology.

[0023] FIGS. 9A and 9B are flow charts for an exemplary
method of initiating an agent and receiving an agent accord-
ing to an embodiment of the disclosed technology.

[0024] FIGS.10A and 10B are flow charts for an exemplary
method of executing an agent at a node according to an
embodiment of the disclosed technology.

[0025] FIG. 11 is a flow chart for an exemplary method for
upgrading an agent according to an embodiment of the dis-
closed technology.

[0026] FIG. 12 is a flow chart for an exemplary method of
authenticating and authorizing an agent according to an
embodiment of the disclosed technology.

[0027] FIGS.13A and 13B are flow charts for an exemplary
method of performing load sequencing according to an
embodiment of the disclosed technology.

US 2013/0036311 Al

[0028] FIG. 14 shows graphs reporting results from a simu-
lation of embodiments of the disclosed technology.

[0029] FIG.151s aschematic block diagram illustrating the
topology and agent movement for one example scenario.

DETAILED DESCRIPTION

1. General Considerations

[0030] Disclosed below are representative embodiments of
methods, apparatus, and systems for monitoring and control-
ling a power grid. Particular embodiments are directed toward
monitoring and controlling the power grid using an agent-
based approach. The disclosed methods, apparatus, and sys-
tems should not be construed as limiting in any way. Instead,
the present disclosure is directed toward all novel and non-
obvious features and aspects of the various disclosed embodi-
ments, alone and in various combinations and subcombina-
tions with one another. Furthermore, any features or aspects
of the disclosed embodiments can be used in various combi-
nations and subcombinations with one another. The disclosed
methods, apparatus, and systems are not limited to any spe-
cific aspect or feature or combination thereof, nor do the
disclosed embodiments require that any one or more specific
advantages be present or problems be solved.

[0031] Although the operations of some of the disclosed
methods are described in a particular, sequential order for
convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless a
particular ordering is required by specific language set forth
below. For example, operations described sequentially may in
some cases be rearranged or performed concurrently. More-
over, for the sake of simplicity, the attached figures may not
show the various ways in which the disclosed methods can be
used in conjunction with other methods. Additionally, the
description sometimes uses terms like “determine” and “gen-
erate” to describe the disclosed methods. These terms are
high-level abstractions of the actual operations that are per-
formed. The actual operations that correspond to these terms
may vary depending on the particular implementation and are
readily discernible by one of ordinary skill in the art. Further-
more, as used herein, the term “and/or” means any one item or
combination of items in the phrase.

[0032] Any of the disclosed methods can be implemented
using computer-executable instructions stored on one or more
computer-readable media (e.g., non-transitory computer-
readable media, such as one or more optical media discs,
volatile memory components (such as DRAM or SRAM), or
nonvolatile memory components (such as hard drives)) and
executed on a computer (e.g., any commercially available
computer). Any of the computer-executable instructions for
implementing the disclosed techniques (e.g., the disclosed
agent generation, agent execution, agent upgrading, agent
authorization, load sequencing, or other techniques) as well
as any intermediate or final data created and used during
implementation of the disclosed agent-based systems can be
stored on one or more computer-readable media (e.g., non-
transitory computer-readable media). The computer-execut-
able instructions can be part of, for example, a dedicated
software application or as part of an agent’s transport payload
that is accessed or downloaded via a network (e.g., a local-
area network, a wide-area network, a client-server network,
or other such network).

[0033] Such software can be executed on a single computer
(e.g., a computer embedded in or electrically coupled to a

Feb. 7, 2013

sensor, controller, or other device in the power grid) or in
network environment. For example, the software can be
executed by a computer embedded in or communicatively
coupled to a sensor for measuring electrical parameters of a
power line or electrical device, a synchrophasor sensor, a
smart meter, a control unit for a home or household appliance
or system (e.g., an air-conditioning unit; heating unit; heat-
ing, ventilation, and air conditioning (“HVAC”) system; hot
water heater; refrigerator; dish washer; washing machine;
dryer; oven; microwave oven; pump; home lighting system;
electrical charger; electric vehicle charger; home electrical
system; or any other electrical system having variable perfor-
mance states), a control unit for a distributed generator (e.g.,
photovoltaic arrays, wind turbines, or electric battery charg-
ing systems), a control unit for controlling the distribution of
power along the power grid (e.g., a transformer, switch, cir-
cuit breaker, or any other device on the power grid configured
to perform a control action), and the like. Further, any of the
control units can also include or receive information from one
Of mMore sensors.

[0034] For clarity, only certain selected aspects of the soft-
ware-based embodiments are described. Other details that are
well known in the art are omitted. For example, it should be
understood that the software-based embodiments are not lim-
ited to any specific computer language or program. For
instance, embodiments of the disclosed technology can be
implemented by software written in C++, Java, Perl, JavaS-
cript, Adobe Flash, Python, JINI, .NET, Lua or any other
suitable programming language. Likewise, embodiments of
the disclosed technology are not limited to any particular
computer or type of hardware. Details of suitable computers
and hardware are well known and need not be set forth in
detail in this disclosure.

[0035] Furthermore, any of the software-based embodi-
ments (comprising, for example, computer-executable
instructions which when executed by a computer cause the
computer to perform any of the disclosed methods) can be
uploaded, downloaded, or remotely accessed through a suit-
able communication means. Such suitable communication
means include, for example, the Internet, the World Wide
Web, an intranet, software applications, cable (including fiber
optic cable), magnetic communications, electromagnetic
communications (including RF, microwave, and infrared
communications), electronic communications, or other such
communication means.

[0036] The disclosed methods can also be implemented by
specialized computing hardware that is configured to perform
any of the disclosed methods. For example, the disclosed
methods can be implemented by a computing device com-
prising an integrated circuit (e.g., an application specific inte-
grated circuit (“ASIC”) or programmable logic device
(“PLD”), such as a field programmable gate array
(“FPGA™)). The integrated circuit or specialized computing
hardware can be embedded in or directly coupled to a sensor,
control unit, or other device in the power grid. For example,
the integrated circuit can be embedded in or otherwise
coupled to a synchrophasor sensor, smart meter, control unit
for a home or household appliance or system, a control unit
for a distributed generator, a control unit for controlling
power distribution on the grid, or other such device.

[0037] FIG. 1illustrates a generalized example of a suitable
computing hardware environment 100 for a computing
device with which several of the described embodiments can
be implemented. The computing environment 100 is not

US 2013/0036311 Al

intended to suggest any limitation as to the scope of use or
functionality of the disclosed technology, as the techniques
and tools described herein can be implemented in diverse
general-purpose or special-purpose environments that have
computing hardware.

[0038] With reference to FIG. 1, the computing environ-
ment 100 includes at least one processing unit 110 and
memory 120. In FIG. 1, this most basic configuration 130 is
included within a dashed line. The processing unit 110
executes computer-executable instructions. In a multi-pro-
cessing system, multiple processing units execute computer-
executable instructions to increase processing power. The
memory 120 may be volatile memory (e.g., registers, cache,
RAM), non-volatile memory (e.g., ROM, EEPROM, flash
memory), or some combination of the two. The memory 120
stores software 180 for implementing one or more of the
described techniques for operating or using the disclosed
agent-based systems. For example, the memory 120 can store
software 180 for implementing any of the disclosed agents or
agent control techniques.

[0039] The computing environment can have additional
features. For example, the computing environment 100
includes storage 140, one or more input devices 150, one or
more output devices 160, and one or more communication
connections 170. An interconnection mechanism (not shown)
such as a bus, controller, or network interconnects the com-
ponents of the computing environment 100. Typically, oper-
ating system software (not shown) provides an operating
environment for other software executing in the computing
environment 100, and coordinates activities of the compo-
nents of the computing environment 100.

[0040] The storage 140 can be removable or non-remov-
able, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, DVDs, or any other tangible non-transi-
tory storage medium which can be used to store information
and which can be accessed within the computing environment
100. The storage 140 can also store instructions for the soft-
ware 180 implementing any of the described techniques, sys-
tems, or environments.

[0041] The input device(s) 150 can be a touch input device
such as a keyboard, mouse, touch screen, pen, or trackball, a
voice input device, a scanning device, or another device that
provides input to the computing environment 100. The output
device(s) 160 can be a display, touch screen, printer, speaker,
or another device that provides output from the computing
environment 100.

[0042] The communication connection(s) 170 enable com-
munication over a communication medium to another com-
puting entity. The communication medium conveys informa-
tion such as computer-executable instructions, the agent
transport payload, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media include wired or wireless tech-
niques implemented with an electrical, optical, RF, infrared,
acoustic, or other carrier.

[0043] The various methods, systems, and interfaces dis-
closed herein can be described in the general context of com-
puter-executable instructions stored on one or more com-
puter-readable media. Computer-readable media are any
available media that can be accessed within or by a computing
environment. By way of example, and not limitation, with the
computing environment 100, computer-readable media

Feb. 7, 2013

include tangible non-transitory computer-readable media,
such as memory 120 and storage 140.

[0044] The various methods, systems, and interfaces dis-
closed herein can also be described in the general context of
computer-executable instructions, such as those included in
program modules, being executed in a computing environ-
ment on a target processor. Generally, program modules
include routines, programs, libraries, objects, classes, com-
ponents, data structures, and the like that perform particular
tasks or implement particular abstract data types. The func-
tionality of the program modules may be combined or split
between program modules as desired in various embodi-
ments. Computer-executable instructions for program mod-
ules may be executed within a local or distributed computing
environment.

1I. Introduction to the Disclosed Technology

[0045] Embodiments of the disclosed technology involve
adding intelligence to the sensors, controllers, actuators, and
other devices (e.g., smart meters, control units for homes
and/or household appliances, control units for distributed
generators, and control units used to control power distribu-
tion on the power grid) being used in the electric power
system. Using embodiments of the disclosed technology, sen-
sors and/or controllers in the electric power system are
capable of sharing information through the various layers of
the electric power system. Further, the two-way information
enabled by the disclosed technology facilitates the integration
of distributed resources into the power grid. Several tech-
niques are disclosed, including the use of peer-to-peer com-
munication as well as distributed agents.

[0046] Sensors in the power system that can adapted to use
embodiments of the disclosed technology include, for
example, synchrophasor sensors that are deployed through-
out the system, power measurement sensors, current meters,
voltage meters, sensors detecting drag or stretch on a trans-
mission line, smart meters, sensors coupled to distributed
power generation devices (e.g., photovoltaic arrays, wind
turbines, electric vehicle charging stations, and the like), sen-
sors coupled to household devices (e.g., responsive air-con-
ditioning units; heating units; heating, ventilation, and air
conditioning (“HVAC”) systems; hot water heaters; refrigera-
tors; dish washers; washing machines; dryers; ovens; micro-
wave ovens; pumps; home lighting systems; electrical charg-
ers; electric vehicle chargers; home electrical systems; or any
other electrical system having variable performance states),
and the like. These sensors can be operable to measure a wide
variety of electrical parameters of the power line, generator,
or device with which they are associated. For example,
depending on the application, a sensor can be configured to
measure power usage, voltage, current, phase angle, and/or
other such electrical parameters.

[0047] Control units in the power system that can be
adapted to use embodiments of the disclosed technology
include, for example, control units for distributed power gen-
eration devices (e.g., photovoltaic arrays, wind turbines, elec-
tric vehicle charging stations, and the like), home power
management systems, control units for household devices
(e.g., responsive air-conditioning units; heating units; heat-
ing, ventilation, and air conditioning (“HVAC”) systems; hot
water heaters; refrigerators; dish washers; washing machines;
dryers; ovens; microwave ovens; pumps; home lighting sys-
tems; electrical chargers; electric vehicle chargers; home
electrical systems; or any other electrical system having vari-

US 2013/0036311 Al

able performance states), control units for controlling the
distribution of power along the power grid (e.g., transformers,
switches, circuit breakers, or any other device on the power
grid configured to perform a control action), and the like.
Further, any of the control units can also include or receive
information from one or more sensors. For example, a control
unit for a hot water heater can be coupled to a sensor for
measuring a current energy level in the hot water heater.
[0048] In particular embodiments, the disclosed software
agents operate on systems with differing levels of computing
power. The agents can cooperate to bring computation closer
to the data. The types of computation can include control
decisions, data analysis, and/or demand/response decisions.
When paired with distributed autonomous controllers, the
sensors form the basis of an information system that supports
deployment of both micro-grids and islanding. For example,
embodiments of the disclosed technology form the basis fora
broad strategy that enables better integration of distributed
generation, distribution automation systems, and decentral-
ized control (e.g., microgrids). In particular embodiments,
the disclosed software platform for implementing software
agents is used at the distribution layer of the electric power
system, where end customers are being served.

[0049] In general, the agents described herein comprise
software entities that are capable of accomplishing a given
task on their own. Also described herein are embodiments of
a software framework (also referred to as a “software plat-
form™) for using agents that is adapted specifically for the
power grid network.

III. Exemplary Agent-Based Software Frameworks for
Monitoring and Controlling a Power Grid

[0050] A. Introduction

[0051] Inthis section, examples of a suitable software plat-
form (or framework) for supporting adaptive and intelligent
sensors, controllers, and electric devices on a power grid are
described. Embodiments of the disclosed software platform
involve an agent-based architecture that is capable of autono-
mous or substantially autonomous operation. For example,
certain embodiments involve moving the control and deci-
sion-making aspects ofthe power grid toward the edges of the
system, thus enhancing distributed operation and increasing
both efficiency and reliability. For instance, embodiments of
the disclosed software agents can operate as distributed enti-
ties, which are given a task to complete and which are capable
of cooperating with each other to accomplish the task. Fur-
ther, embodiments of the disclosed software platform are
designed to support both mobile and stationary agents.
[0052] Some embodiments of the disclosed intelligent sen-
sors, intelligent controllers, and associated agent-based
framework are capable of operating autonomously without
requiring intervention from a centralized control point. They
can adapt and tailor their measurement methods based on
environmental conditions and perform multiple types of mea-
surements belonging to different domains to enable localized
autonomous control while also communicating this informa-
tion back to a system operations center. Alternatively, mea-
surements from multiple single-purpose sensors may be com-
bined by an intelligent sensor aggregator to support legacy
sensors that already exist in the power grid

[0053] The disclosed embodiments of the software plat-
form can exhibit a number of possible advantages, any one or
more of which can be present in an implementation of the
disclosed technology. For example, embodiments of the dis-

Feb. 7, 2013

closed software platform can help (1) meet real-time (or
substantially real-time) data processing requirements; (2)
improve control system response times by locating intelli-
gence closer to the control points; (3) adjust automatically the
resolution and frequency of data being sent across the sensor
network based on current state of the systems being observed
by the sensor; (4) explore new ways of correlating data from
multiple domains such as power systems and network secu-
rity; (5) create the information channels to enable two-way
power flows to speed up the integration of distributed genera-
tion in the power system; (6) increase the scalability of the
information networks in the electric power grid; and/or (7)
allow decentralized control to support micro-grids and
islanding.

[0054] B. Principles of Operation

[0055] This section describes generally how agents imple-
mented according to embodiments of the disclosed software
framework can operate in a power system. Before describing
the agent operational concepts, the hierarchical organization
of embodiments of the disclosed technology are described. In
particular, the organizational boundary (termed a “scope of
influence” or “SOI”) that can be used by agents operating
according to the disclosed software framework is described.
[0056] 1. Scopes of Influence

[0057] The electric power system generally follows a fairly
hierarchical organizational structure. A country is divided
into regions. In each region, there are typically balancing
authorities, regional transmission operators, power genera-
tion suppliers, and distribution utilities. Within a distribution
utility, electric power flows through distribution lines to dis-
tribution substations and then to feeder lines that deliver
power to customer premises. In certain embodiments of the
disclosed technology, the intelligence and distributed com-
puting capabilities follow a substantially similar organiza-
tional structure. In the discussion below, the organizational
boundary is referred to as the “scope of influence” or “SOI”.
In particular, the SOI refers to an organizational boundary
within which a set of software agents can communicate,
cooperate, and exchange information. In certain embodi-
ments, an SOI has one or more non-human “initiators” (e.g.,
computing entities) that are responsible for initiating and
distributing tasks to agents as well as providing ancillary
services to the agents within an SOI. These ancillary services
can include (but are not limited to) agent discovery and direc-
tory services, and trust services (e.g., reputation management
and trust negotiation). An initiator may also participate in
network services, such as routing and name resolution. In
certain embodiments, each SOI has a unique identifier. This
unique identifier may be constructed by combining a name, a
location, and/or a network address. In general, the initiator
can be implemented using any embodiment of the computing
devices described herein (e.g., a computer having an archi-
tecture such as shown in FIG. 1). Furthermore, within the
SO, the initiator may be located at a central location or a
location suitable for the power grid operator to easily control
and monitor the initiator (e.g., in a feeder SOI, the initiator
can be located at the distribution substation where the feeder
originates).

[0058] FIG. 2 is a schematic block diagram 200 illustrating
multiple SOIs. In the illustrated embodiment, five SOIs are
shown, though more or fewer SOIs can exist. In FIG. 2, the
following SOIs are illustrated: utility SOI 210, substation SOI
212, feeder SOI 214, and customer premises SOI 216. Fur-
ther, even though only a single example of each SOI is illus-

US 2013/0036311 Al

trated in FIG. 2, it is to be understood that on account of the
hierarchical structure of the power grid, each SOI can include
two or more SOIs at the next lower-order hierarchical level.
For example, within a utility SOI, there can be multiple sub-
station SOIs. Within a substation SOI, there can be multiple
feeder SOIs. Within a feeder SOI, there can be multiple cus-
tomer premises SOIs. Note also that while the utility, substa-
tion, and feeder SOIs can be under the same administrative
authority, the customer premises SOI is more than likely
under a different administrative authority. In particular, the
customer premises SOI is likely controlled by the customer
(e.g., using a home energy management system, multiple
responsive home appliances, or the like). Also illustrated in
FIG. 2 is a third-party SOI 220, which represents entities that
are not utilities and not owned by a utility that perform func-
tions within the power system. The third-party SOI 220 can
be, for example, a virtual power plant provider (e.g., a group
of distributed generation installations that are collectively run
by a central control entity). Note that a customer may choose
to trust a third party SOI, even if the utility serving the cus-
tomer does not.

[0059] In one exemplary implementation of the software
framework (referred to as the “representative framework™),
the framework exhibits the characteristics described below. It
is to be understood, however, that other embodiments within
the scope of this disclosure can exhibit only one or more or
none of these characteristics.

[0060] In the representative framework, each SOI has at
least one initiator that is responsible for assigning tasks and
dispatching agents within the SOI. The task assignment can
be performed on the basis of the agent capabilities (examples
of which are discussed more fully below). The initiator can
also facilitate ancillary services including directory services,
trust and reputation management, and communication
between this SOI and its parent SOI. While the initiator can
itself be considered an agent; it is stationary in the represen-
tative framework and has closer integration with the software
platform than other software agents. If there is more than one
initiator in an SOI, it is assumed that one of the initiators is
selected as the initiator (e.g., by the utility or by the initiators
collaborating to choose) with all other initiators in the SOI
serving the master initiator. Further, in particular implemen-
tations, the initiators are provisioned by the administrator of
the SOI at system configuration time.

[0061] In the representative framework, the administrator
of'an SOI can upload/enable agents to be run within an SOI.
If an administrator manages multiple SOIs, then an agent can
be enabled to run within multiple SOIs (e.g., either by sepa-
rately initiating the agent within each SOI or by initiating a
single agent that is assigned to multiple SOIs).

[0062] In the representative framework, each SOI has a
policy for determining whether an agent is authorized to run
within the SOI. This policy is based on factors such as the
agent creator’s and initiator’s trust levels, verification that the
agent has not been tampered with and activity-specific autho-
rizations for each type of activity to be performed by the
agent. Further, the configuration policies module at an SOI
can indicate that any agent from a particular creator or SOl is
to be trusted (or not). Additionally, the configuration policies
module for an SOI can have: (1) a policy that describes
additional authorization requirements (such as trust negotia-
tion) for allowing agents from other SOIs to execute within
the SOI; (2) a policy that defines the specific actions that
agents from other SOIs are allowed to perform; (3) a policy

Feb. 7, 2013

that describes the allowed communications between agents
within an SOI; and/or (4) a policy that describes the allowed
communications between agents within the SOI and agents in
other SOIs.

[0063] 2. Overview of the Operation of Agents

[0064] An agentcomprises a software entity that is capable
of accomplishing a given task on its own. In particular, an
agent comprises a piece of software (e.g., a set of computer-
executable instructions) or software module that acts for a
user or other program in a relationship of agency when
executed. In the representative framework, an agent’s pur-
poseistoaccomplish a task assigned to it by the initiator in the
SOI that the agent resides in. An agent is originally pro-
grammed by its creator to perform a function or to accomplish
atask, but is assigned to a particular task by the initiator. The
creator may be a vendor, or it could be the utility itself. The
initiator is typically a static agent (or non-human computing
entity) operated by a representative of the utility (e.g., an SOI
administrator at a substation SOI or feeder SOI). In certain
implementations, the initiator has access to a library of agents
(e.g., stored locally at the computing device implementing the
SOl initiator, or stored remotely and remotely accessed) for
performing a variety of functions.

[0065] In particular implementations, the initiator acts
according to a task list that comprises a set of one or more
tasks. The task list can be created, updated, or otherwise
maintained by an operator of the SOl serviced by the initiator.
For example, a task at a feeder SOI may be to check power
usage to determine whether there is theft of power on that
feeder. The task list implemented by the initiator may include
tasks that need to be performed periodically (e.g., at sched-
uled intervals). Depending on the tasks to be performed by the
initiator, a catalog of agents can be stored and accessed by the
initiator, the catalog comprising the appropriate set of agents
to perform the task.

[0066] 3. Exemplary Operations of an Agent

[0067] To illustrate the operation of an agent, an exemplary
scenario in which an agent is dispatched to perform a task on
a series of devices within an SOI and returns with collected
information to the initiator is described. In this representative
example, the task is to collect power outputs from photovol-
taic panels on a number of houses in a neighborhood (e.g., at
S-minute intervals) within a feeder SOI. Additional details
concerning exemplary embodiments of the described agent
creation process, agent initiation process, agent execution
process, and agent authentication and authorization process
are discussed in more detail below in Section IV and with
respect to FIGS. 8-12.

[0068] FIG. 15 is a schematic block diagram 1500 illustrat-
ing the topology and agent movement for the exemplary
scenario. In particular, FIG. 15 illustrates a distribution sub-
station 1510 from which the local feeder 1512 originates. The
feeder 1512 is operative to distribute power among multiple
homes, including homes 1520, 1522, and 1524. The distribu-
tion substation 1510 further comprises the initiator 1511 for
an SOI associated with the feeder (in this example, the feeder
SOI comprises the homes 1520, 1522, 1524).

[0069] In this example, the initiator 1511 is communica-
tively coupled to intelligent sensors associated with photo-
voltaic panels on each of the homes 1520, 1522, 1524 via
network 1514. The network 1514 can be implemented as a
Local Area Network (“LAN”) using wired networking (e.g.,
using the Ethernet IEEE standard 802.3 or other appropriate
standard) or wireless networking (e.g. using one of the IEEE

US 2013/0036311 Al

standards 802.11a, 802.11b, 802.11g, or 802.11n or other
appropriate standard). Furthermore, at least part of the net-
work 1514 can be the Internet or a similar public network. The
initiator 1511 and the intelligent sensors at the homes 1520,
1522, 1524 can be implemented using any of the computing
devices or computer architectures described above (e.g., gen-
eral-purpose computing devices or specialized computing
devices (such as ASICs or FPGAs)). Further, the computing
devices can operate using embodiments of the disclosed
agent-based software platform.

[0070] In this example, the initiator 1511 at the feeder SOI
selects a distributed generation data collection agent to per-
form the desired task (e.g., an agent for collecting 5-minute
power outputs of photovoltaic panels in a neighborhood). The
code for the agent can be cryptographically signed by its
creator at creation time. As part of the agent creation, the
creator can also define the resources, such as the processing
and memory required for the agent to execute the task, and
attach the execution requirements to the agent code. The
execution requirements are sometimes referred to herein as
the “resource requirements” or the “agent execution contract
proposal.” The initiator 1511 checks the cryptographic signa-
ture for the agent either periodically, or during the agent
dispatch process. In order to dispatch the agent, the initiator
1511 determines the devices on the feeder 1512 (e.g., the
intelligent sensors at homes 1520, 1522, 1524) and provides
the path information to the agent. The determination of the
path and the devices on the feeder 1512 can be accomplished
by consulting a directory service module. The directory ser-
vice module can retrieve the path information either by an
automated discovery process performed by tasking and trans-
mitting a discovery agent, or by consulting a topology and
configuration database (assembled, for example, as a result of
the earlier use of a discovery agent).

[0071] The initiator 1511 then constructs the agent trans-
port payload. In certain exemplary implementations, the
agent transport payload comprises the initiator’s identifica-
tion, the creator’s identification, the configuration data for the
agent (including its path (comprising a list of one or more
destination nodes) and task configuration parameters (com-
prising parameters set by the initiator for the particular task to
be performed by the agent), and an empty data container that
the agent uses to store its data as it is sent to one or more
destination devices (sometimes referred to as the “mutable
data container”). Note that the data container can grow as the
agent performs its task. The agent transport payload can also
include data identifying the current source (the sending host,
which in this case is the initiator node) and, optionally, the
next destination host (e.g., the next destination node on the
path) of the agent.

[0072] One or more of the components of the agent trans-
port payload can be cryptographically signed by the creator,
the initiator, and/or the current host (which may be the initia-
tor). For example, a hash of the agent code and/or the creator
identification information can be cryptographically signed by
the creator. Further, the initiator 1511 can cryptographically
sign a hash of the combination of configuration data, initiator
identification information, creator identification information,
and/or agent code. Additionally, the source node (or sending
node), which for the initial hop is the initiator, can also fill in
the source information (and optionally the next destination
information) and sign the entire payload with a further cryp-
tographic signature.

Feb. 7, 2013

[0073] The initiator 1511 then transfers the agent transport
payload to a network services interface for transmission on
the network 1514 to the first destination (illustrated as first
“hop” 1530 to home 1520). The network packets may further
be protected during transmission by cryptographic means,
such as IPsec or SSL. The network will transport the agent
transport payload to its destination. In certain implementa-
tions, if the agent transport payload is larger than the maxi-
mum transmission unit of the network, the agent transport
payload will be fragmented and re-assembled by the network
layer.

[0074] At the destination device, the agent transport pay-
load is received and processed. In the illustrated example, the
destination device is the intelligent sensor at home 1520. For
example, the destination device can verify the source and path
information by checking the cryptographic signature of the
agent transport payload. If the payload is not verified, then it
will be discarded (and, in certain embodiments, a security
violation event is logged). If the payload is verified, the agent
instantiation process will begin.

[0075] In one exemplary embodiment, the agent instantia-
tion process comprises one or more of the following acts. The
destination device (which also operates using an agent-based
software platform compatible with or the same as the plat-
form used by the initiator) identifies the identity of the initia-
tor (e.g., by parsing the agent transport payload and identify-
ing the identity of the initiator). The destination device
authenticates the initiator and the source, verifies that the
initiator is an authorized initiator for the device’s SOI, and
verifies that the source of the agent is the prior node in the
path. The destination device verifies that the configuration
data has not been tampered and verifies that the mutable data
container was not changed during transport (e.g., by using the
one or more hashes sent with the agent transport payload).
The destination device extracts the agent execution contract
template sent with the agent transport payload and verifies
that sufficient resources exist to ensure successful execution
of the agent. If the checks above succeed, the destination
device passes executable agent code and data to an agent
execution environment associated with the destination
device. In particular implementations, parts of the agent
transport payload signed by the creator and by the initiator are
immutable during the movement of an agent. Therefore, the
associated immutable agent data is desirably preserved to
ensure that the agent can move to a next destination device
(e.g., a next hop to a next destination node).

[0076] The destination device then executes the agent code
so that the agent completes its task on the device and collects
the requested information. In particular implementations, the
collected data is stored in the mutable data container and
travels with the agent. In certain implementations, the
mutable data container is cryptographically signed at each
hop by the source (sender) of the agent transport payload.
[0077] Once the requested data is collected and stored at a
destination device, the agent will request movement to its
next hop based on its path (which can be part of the immutable
configuration data in the agent transport payload). In the
illustrated example, the next hop is second hop 1532 to the
home 1522.

[0078] Incertainimplementations, the agent transport pay-
load is recreated in the same fashion as when the agent trans-
port payload was created by the initiator, but the mutable data
container and the outer parts of the payload are signed by the
source device (e.g., the node on the network that is sending

US 2013/0036311 Al

the agent to its next destination node). At the next destination
device (e.g., at home 1522), the process described above will
be repeated until all destination devices have been reached.
For example, in FIG. 15, a final hop 1534 to home 1524 is
illustrated. The agent will then be sent back to the initiator.
For example, in FIG. 15, a returning hop 1536 from the home
1524 to the initiator 1511 is illustrated.

[0079] When the agent is received by the initiator 1511, the
initiator will verify the source, destination, and the mutable
data container as described above. The initiator 1511 will also
verify the remaining immutable segments of the agent trans-
port payload to (once again) confirm that the agent has not
mutated during its travels. If all of the checks succeed, the
initiator will extract the desired information from the mutable
data container, thus completing the agent lifecycle.

[0080] 4. Agent Movement and Tasking Between SOls
[0081] In this section, an exemplary scenario in which a
parent SOI tasks an agent to perform a task on a subset of its
child SOIs is described. In the exemplary scenario, an initia-
tor at a substation SOI dispatches an agent to perform a
software update to all devices in a feeder SOI. In this case, the
initiator will dispatch the software update agent to the initia-
tor of its child SOI using a procedure substantially similar to
that described in the previous section (Section I11.B.3). In this
case, however, because the original initiator of the task
belongs to a different SOI, the receiving SOIs initiator will
check the authentication and authorization of the sending SOI
as part of its policy check. Additional details concerning
exemplary embodiments of the described agent authentica-
tion and authorization process are discussed in more detail
below at Section IV.D.5 and with respect to FIG. 12.

[0082] One exemplary method for authenticating and
authorizing the agent comprises the following method acts,
which can be performed alone or in various combinations and
sub-combinations with one another. When the initiator in an
SOl receives an agent from another SOI (e.g., from its parent
SOI), the initiator authenticates and authorizes the agent as
described in the previous section (Section III1.B.3). This is
possible because logically the initiator in an SOI participates
in one or more trust relationships with other SOIs. Once the
agent is authorized, the initiator of the SOl adds an immutable
data container that contains the authorization and authentica-
tion credentials of the original initiator of the agent. The
initiator of the SOI can further sign these credentials to ensure
that the devices within that SOI will trust the new agent. The
initiator can then send the agent to the first device on its path
using the procedure described above in the previous section
(Section 111.B.3).

[0083] 5. Exemplary Stationary Agent and Agent Upgrade
Scenario
[0084] A stationary agent is an agent that remains on a

single device and does not move once deployed. Stationary
agents can be upgraded by means of pushing new agent code
onto the system to replace an existing agent. Because the
agent in this scenario is stationary, there are times when the
agent will need to be upgraded to enhance its functionality or
to improve existing functionality. Additional details concern-
ing exemplary embodiments of the described agent update
process are discussed in more detail below at Section IV.D.4
and with respect to FIG. 11.

[0085] One exemplary procedure for upgrading a station-
ary agent comprises one or more of the following method
acts, which can be performed alone or in various combina-
tions and subcombinations with one another. The device with

Feb. 7, 2013

the agent being upgraded receives and validates the agent
transport payload (e.g., using the process described above in
Section III1.B.3). The agent transport payload is evaluated to
determine if it is an upgrade for an existing agent running on
the device platform. If the payload comprises an update, the
currently executing agent is notified that an upgrade is in
progress. The currently executing agent can then take a snap-
shot of its state (e.g., by storing information indicative of its
current state) and terminate. If the currently executing agent
does not support upgrade-in-place functionality, then the
device platform can terminate the agent. The new agent code
can then be made available to the agent execution environ-
ment, and the agent execution environment will execute the
new agent. If the agent supports upgrade-in-place function-
ality, the upgraded agent will restart from its last-saved state;
otherwise, the upgraded agent will restart with a clean data
store.

[0086] 6. Runaway Agent and Reputation-Based Trust
Enhancements
[0087] In certain embodiments of the disclosed software

framework, before an agent is instantiated on a platform, the
agent presents its “agent execution contract proposal” (dis-
cussed above in Section II1.B.3). The agent execution con-
tract proposal comprises data indicating the execution
resource requirements for the agent. A resource monitor asso-
ciated with the device executing the agent can be used to
validate the requirements presented by the agent and to gen-
erate data indicating that the resources are available on the
device, thus “agreeing” to the proposal (this action can be
conceptually viewed as the agent creating a binding contract
between the platform and the agent). The agent (if desired by
the creator of the agent) can then monitor the allocated
resources. If the agent detects a violation of the agreed-upon
resource requirements (conceptually, a violation of the con-
tract), the agent can log an event and/or use an interface
provided by the resource monitor to trigger a readjustment of
the platform resources. The resource monitor associated with
the device can also monitor the utilization of the platform
resources by all agents operating on the platform.

[0088] If the resource monitor detects an agent that is
exceeding its agreed-upon resource requirements, the
resource monitor can respond. For example, in one particular
embodiment, an agent can be determined to exceed its
resource allocation limit if it exceeds the limit for a set period
of time. The resource monitor can send the agent a message
(e.g., adata message indicating that the agent is in violation of
the resource allocation limit) through the platform and to the
agent execution environment. The resource monitor can then
start a timer to track the agent response. When the tracking
timer expires, and the agent has not responded, the resource
monitor will notify the agent execution environment to ter-
minate the agent. The resource monitor can then restart the
tracking timer. If the tracking timer expires and the agent
execution environment has not responded, the resource moni-
tor can terminate the agent through operating system level
mechanisms (e.g., a “force quit” mechanism).

[0089] One possible advantage of having control over the
trust mechanisms in the agent-based software platform is that
reputation-based schemes can be utilized to propagate infor-
mation about unreliable or faulty agents within an SOI or
through the entire system. For example, if an agent repeatedly
fails to honor the agent execution contract, due to malicious
intent or a software bug, this information can be sent back to

US 2013/0036311 Al

the initiator of the SOI. The initiator can then stop tasking this
agent, and the information can also be sent back to the creator
of the agent as well.

[0090] C. Capabilities of and Considerations for Embodi-
ments of the Disclosed Software Platform

[0091] This section describes some of the capabilities that
can be realized in embodiments of the disclosed technology
and also describes some of the hardware, software, and net-
working considerations that are involved in implementations
of the disclosed technology.

[0092] Although some of these functions and/or capabili-
ties may not be feasible for some devices in the power system,
the examples described below illustrate possible functions
and capabilities that can be realized using embodiments of the
disclosed technology. Additionally, due to long equipment
replacement cycles in the power industry, it may not be fea-
sibleto upgrade all older equipment quickly to enable some or
all of the described functionality.

[0093] To help accelerate the deployment of intelligent sen-
sors in the power grid and to help realize at least some of the
described functionality, one or more proxy devices can be
coupled between legacy devices (e.g., legacy sensors) and
control applications in order to provide at least some of the
enhanced functionality described. This proxy device is some-
times referred to herein as an “intelligent sensor aggregator”
(“ISAg™).

[0094] 1. Hardware

[0095] In order for embodiments of the disclosed technol-
ogy to be flexible and capable of implementation across a
wide variety of hardware platforms, the hardware require-
ments for the software platform used to implement the rep-
resentative framework are desirably not highly demanding.
Even so, there may be instances of legacy hardware that are
not capable of running the software platform for the repre-
sentative framework. For devices that are not capable of
accommodating the agents, an ISAg device can act as a proxy
platform and still enable the desired functionality that is
required.

[0096] The hardware used to implement embodiments of
the disclosed software platform (e.g., the hardware used at
sensors or controllers in the power system) can be separated
into the central processing unit (“CPU”), memory, storage,
and inputs/outputs. For CPUs, and according to one exem-
plary embodiment, a memory management unit (“MMU”)
that supports virtual memory, paging, and process memory
segmentation is used. These MMU capabilities are not very
strict, since in the last several years embedded microproces-
sors from many CPU families (e.g., ARM, PPC, x86) have all
gained an MMU. One benefit of an MMU in an embedded
device is the ability to support memory isolation and segmen-
tation between different processes running on the CPU. This
enables different agents running on the system to be isolated
from each other and improves the cyber security of the plat-
form.

[0097] The memory (e.g., RAM) located on a device used
in the power system can be relatively small compared to what
is commonly used in consumer applications. For instance, in
some non-limiting examples, devices with 256 MB or more
memory can be used, although embodiments of the disclosed
software platform can be sized down to lower memory sizes
as well. Further, in certain non-limiting exemplary embodi-
ments, the devices have at least 128 MB of non-volatile stor-
age, though the embodiments of the disclosed platform can
operate using devices with less storage as well. Typically, in

Feb. 7, 2013

control systems, flash memory is used and the operating
system is aware of wear associated with flash memory when
information is written to the same sectors repeatedly.

[0098] A sensor or controller can have many inputs and
outputs. Embodiments of the disclosed software platform can
be used with sensors or controllers having any number inputs
and outputs. An ISAg can have many serial and networked
inputs. Since the sensors or controllers are assumed to be
networked, the sensors or controllers used with the disclosed
software platform will typically have at least one wired or
wireless network interface.

[0099] 2. Operating System

[0100] Embodiments of the disclosed software platform
can operate using a wide variety of operating systems. For
example, in particular non-limiting examples, and given the
memory, storage, and CPU capabilities of devices that are
present in the power system, the operating system is desirably
capable of running on devices with a memory of 256 MB or
more and reserves 128 MB or more of memory for the agent
framework for agents. In other embodiments, the operating
system is implemented on devices with less memory.

[0101] 3. Diagnostic and Manageability Considerations
[0102] Embodiments of the disclosed software framework
allow for improved diagnostics and management. For
example, agents can be dispatched to collect data as they
move through the system and can then carry that data back to
a management station. Embodiments of the disclosed soft-
ware platform are capable of managing the activities of mul-
tiple hosted agents (e.g., all hosted agents) in the system. This
management function can include, for instance, stopping,
restarting, or banning any agent deployed in the system.
[0103] 4. Information Sharing

[0104] In certain embodiments of the disclosed software
platform, the agents used in the power grid are capable of
accomplishing tasks that would normally require large
amounts of communication if implementing using a central-
ized system. In order to limit the amount of information being
communicated across wide portions ofthe system, “scopes of
influence,” as introduced above, are used to create communi-
cation boundaries between groups of sensors and their asso-
ciated agent initiators. Further, the communications that
occurin such a “scope of influence” are secure and reliable. In
certain embodiments, the sensors and/or controllers may be
further divided into sub-groups (sometimes referred to as
“task groups”) that are task based. For example, sensors and/
or controllers collaborating on accomplishing load sequenc-
ing may belong to a “load sequencing” task group. An
example method of performing load sequencing is described
below with respect to FIGS. 13A-B.

[0105] 5. Runtime Environment

[0106] Asnotedabove, the software agents used in embodi-
ments of the disclosed software framework can be stationary
or roam between sensors and/or controllers in the system.
Agents are task driven and can be used to accomplish a task
that involves many sensors and/or controllers. Certain
embodiments of the disclosed technology exhibit one or more
of'the following features: (1) agents are capable of running on
multiple CPU architectures as long as agent resource require-
ments are met (the agents operate with a runtime environment
that is independent of the underlying CPU architecture); (2)
the agent framework is able to determine whether it has the
capabilities to support a particular agent; (3) the agent frame-
work is able to determine if the agent requesting “hosting” is
authorized to execute on that platform; (4) the agent frame-

US 2013/0036311 Al

work is able to determine if the agent code has been tampered
with; (5) the agent framework allows agents to store informa-
tion on-board; (6) the agent framework provides access to
information collection and dissemination services for the
agent; (7) the agent framework is able to allocate (e.g., sto-
chastically) a requested slice of'its resources such as memory,
storage, processor cycles to an agent; (8) the agent framework
is able to detect and terminate an agent that is not behaving
according to its agent/platform contract; (9) the agent frame-
work is able to collect and transmit an inventory of agents
hosted by the platform; (10) the agent framework can imple-
ment a “liveness” check for each agent hosted on the platform
in order to detect and terminate malfunctioning agents; and/or
(11) the agent framework can provide a protected environ-
ment for each agent (e.g., including memory and storage
protection).

[0107] 6. Configuring, Changing, and Updating Agents
[0108] Embodiments of the disclosed software platform
allow for agents to be easily configured, changed, and
updated. For example, if smart meter data collection is imple-
mented as an agent, the metrology agent can be updated using
embodiments of the disclosed technology without needing to
perform a costly and time consuming monolithic firmware
upgrade for the entire platform image. A new version of an
agent can simply be dispatched by means of an update agent
that moves through the system. An update agent can also
perform configuration and change management duties. To
enable such functionality, embodiments of the disclosed soft-
ware platform use a well-defined interface for agents such
that an agent can be upgraded without needing a complete
software update for the entire platform.

[0109] 7. Security and Robustness

[0110] The sensors and controllers in a power system are
networked devices. In order to allow the sensors and control-
lers in the system to be able to share information securely,
certain embodiments of the disclosed agent-based software
framework exhibit one or more of the following features: (1)
the agent framework validates agent software as part of the
instantiation process; (2) the agent framework periodically
validates the software to detect tampered executables if the
software framework resides in modifiable storage; (3) the
agent framework locks certain memory locations as read-
only once the boot process is completed (this may include all
cryptographic and authentication libraries and be performed
using capabilities in the operating system); (4) the agent
framework detects resource exhaustion (either malicious or
due to defective software) and take corrective action; (5) for
battery operated platforms, the software platform detects
behavior that causes battery exhaustion and take corrective
action; (6) the agent framework is resilient against misfiring
interrupts and can mask a misfiring interrupt (e.g., using
interrupt handling mechanisms in the operating system); and/
or (7) the agent framework offers memory protection to
hosted agents (e.g., using memory protection capabilities in
the operating system).

[0111] Additionally, in certain implementations of the dis-
closed technology, the networked devices desirably handle
incoming network traffic at the full data rate supported by
their interfaces. For example, a sensor that has a 100 Mbps
IEEE 802.3 Ethernet interface desirably receives packets at or
near that full rate without crashing or hanging. Further, the
device hardware used in certain embodiments of the disclosed
technology includes interfaces that communicate with the
agent framework and are used to implement a physical tamper

Feb. 7, 2013

detection warning system that generates an event when physi-
cal tampering is detected by tamper detection circuitry.
[0112] Additionally, some embodiments of the disclosed
technology are adapted to satisfy the authentication, authori-
zation, and accounting (“AAA”) requirements as discussed in
Stouffer, K., et al., “Guide to Industrial Control Systems
(‘ICS*) Security, Techmical Report Special Publication,”
NIST, 800-82 (2008), as well as requirements for communi-
cation protocols security. Additional cyber security require-
ments that can be met in certain embodiments can be found in
Smart Grid Interoperability Panel Cyber Security Working
Group, “Guidelines for Smart Grid Cyber Security,” NIST IR
7628 (2010).

1V. Detailed Description of Exemplary Software Frameworks
and Methods for Using Agents

[0113] A. Overview of Software Platform Components
[0114] FIG. 3 is a schematic block diagram 300 showing a
generalized view of a hardware/software framework 310 that
can be used in embodiments of the disclosed technology. In
particular, the framework 310 can be used to implement any
of the intelligent sensors, controllers, and/or initiators in the
system. In particular, the framework 310 comprises a base
hardware platform 312 that comprises the hardware resources
for implementing the software platform and is further
coupled to digital and/or analog sensing/control interfaces
314 (e.g., for receiving data sensed at the sensor) and network
communication interfaces 316 (e.g., for communicating with
the initiator and sensors in the network). An operating system
320 is optional, as certain runtime environments can run
directly on hardware without the need of an operating system.
Agent framework 330 is executed on the base hardware plat-
form 312 (optionally in conjunction with the operating sys-
tem 320). The agent framework 330 is the main runtime
environment for the agents. Exemplary embodiments of the
agent framework 330 are described below as framework 400
and framework 500. One or more agent applications (such as
applications 332, 334) run using the agent framework 330. In
particular embodiments, other applications 336 can also be
executed on the base hardware platform 312.

[0115] FIG. 4 is a schematic block diagram showing inter-
nal components of an exemplary intelligent sensor or control-
ler agent framework 400. The framework 400 can be used as
the agent framework 330 in FIG. 3. The schematic block
diagram of FIG. 4 illustrates the components as a series of
layers. At the base layer, a hardware direct interface 410
allows the framework to run directly on top of hardware, and
an operating system interface 412 allows the framework to
operate as a module inside an operating system. Agent net-
work communication layer 420 provides a network commu-
nication interface, including the necessary cyber security
functions for data transport. Agent discovery, cooperation,
and collaboration layer 430 allows the agents executing in the
framework 400 to discover other agents, exchange informa-
tion securely, and cooperate to accomplish tasks. Agent
authentication and authorization layer 440 validates that an
agent is authorized to execute on the sensor or controller and
that the agent has not been tampered with during transit. In
particular embodiments, the authentication and authorization
of'the agent is performed by consulting with a resource sched-
uling and guarantees layer 450. The resource scheduling and
guarantees layer 450 determines whether the platform has
sufficient resources to accommodate this agent. Agent instan-
tiation and mobility layer 460 supports movement of agents

US 2013/0036311 Al

between devices. Agent execution environment 470 provides
all other services that allow an agent to accomplish its tasks.
One or more agent applications (such as agent applications
480, 482) operate in the agent execution environment 470.
[0116] FIG. 5is another schematic block diagram showing
internal modules of an exemplary intelligent sensor or con-
troller agent framework 500. The modules illustrated in
framework 500 serve to implement the functionality of the
layers illustrated in framework 400. The modules in FIG. 5§
can be categorized as either external facing (interfacing with
components outside of the framework), related to security,
related to agent support, or related to agent execution.
[0117] In particular embodiments, authentication and
authorization module 510, trust store module 512, and con-
figuration policies module 514 represent the security-related
modules. Network services interface 532 and resource moni-
tor module 530 represent external facing components. Direc-
tory services module 520, agent packaging and instantiation
module 522, information exchange bus 524, and local store
526 represent agent support modules. Agent execution envi-
ronment 540 and its sub-components represent modules
related to agent execution.

[0118] In certain exemplary embodiments, the authentica-
tion and authorization module 510 validates that an agent is
authorized to execute on the device and that the agent has not
been tampered with during transit. The agent can be authen-
ticated, for example, using a public key pair (e.g., an X.509
public key pair). For instance, in particular embodiments,
SOI administrators, initiators, and creators each have a public
key. In certain implementations, the possible hosts in the
system also have respective public keys. Further, the public
keys can be stored in the SOl-level trust store module 512.
The trust store module 512 can operate as a whitelist, mean-
ing that keys will only be present for entities for which inter-
action is approved by the SOI administrator. The public keys
can also be marked for expiration. In certain embodiments,
possible hosts in the system (e.g, all possible hosts across the
system or in the local SOI) are stored in a directory service
module 520, which can be accessed by the authentication and
authorization module 510. Further, in particular embodi-
ments, the SOl administrator can store an authoritative policy
(e.g., describing all authorized agent interactions) as part of
the configuration policies module 514.

[0119] In certain exemplary embodiments, the trust store
module 512 interacts with an SOI administrator in the follow-
ing manner. If a public key for an SOI administrator, agent
initiator, agent creator, or other entity to be verified cannot be
found in the local trust store (e.g., in the trust store module
152), then a request to the SOI administrator is made to
retrieve it. If the public key is not in the SOI administrator’s
trust store, the SOl administrator requests it from one or more
of its peer SOI administrators, a utility company having
authority over the SOI administrator, and/or a balancing
authority with certificate authority. An agent initiator can be
given the SOl administrator’s public key upon startup, and the
local SOI administrator is trusted once authenticated.

[0120] During agent instantiation (performed by agent
packaging and instantiation module 522), the authorization
and authentication module 510 performs one or more of the
following services: (1) verifying that the configuration data
has not been tampered with; (2) verifying that the mutable
data container has not been changed during transport; (3)
verifying that the immutable container (including the agent
code) has not changed during transport or prior execution; (4)

Feb. 7, 2013

if the SOI of the agent is not the local SOI, verifying the
identity, reputation, and authorization of the SOI administra-
tor (e.g., by checking whether the SOI administrator signature
matches a public key in a local cache (such as a local trust
store 512), checking whether the SOI administrator is trust-
worthy (by checking data stored in the local trust store 512),
and/or checking whether the SOI administrator’s agents are
allowed to be considered for running in the local SOI (by
checking data stored in the local trust store 512); (5) verifying
the identity, reputation, and authorization of the agent initia-
tor (e.g., by checking whether the agent initiator signature
matches a public key in a local cache (such as the trust store
512), checking whether the agent initiator is authorized to
dispatch an agent to the device (by checking data stored in the
local trust store 512), and/or checking whether the agent
initiator is trustworthy (by checking data stored in the local
trust store 512));

[0121] (6) veritying the identity, reputation, and authoriza-
tion of the creator (e.g., by checking whether the agent creator
signature matches a public key in a local cache (such as the
trust store 512), checking whether the agent creator is autho-
rized to create agents of this type (by checking data stored in
the local trust store 512), and/or checking whether the agent
creator is trustworthy (by checking data stored in the local
trust store 512)); (7) verifying the authorization of the agent
(e.g., by verifying that agents of this type are allowed to run
within this SOI by checking the configuration policy to deter-
mine whether the policy (a) permits the desired agent execu-
tion; (b) permits the desired agent execution from the SOI
from which the agent was sent; (c) permits the desired com-
munication with other agents, if any, in the SOI; and/or (d)
permits the desired communication with other agents, if any,
in other SOIs).

[0122] During agent tasking, the authorization and authen-
tication module 510 performs one or more of the following
services: (1) verifying the cryptographic signature; and/or (2)
checking the reputation of hosts on the proposed agent path.
Once agent tasking is complete, the authorization and authen-
tication module 510 can also update reputation data for hosts,
initiators, and SOIs.

[0123] The authorization and authentication module 510
can perform its function using a wide variety of security
technologies (e.g., the Cryptographic Trust Management sys-
tem available from Pacific Northwest National Laboratories
(see, e.g., T. W. Edgar, “Cryptographic Trust Management
Requirements Specification,” version 1.1, PNNL-18744
(September 2009)), X.509 certificates, SAML, IPsec, PGP,
and the like), trust technologies (e.g., reputation tracking and
trust negotiation technologies), and/or policy languages and
technologies (e.g., XACML and SPARQL). Example encryp-
tion technologies that can be used by the authorization and
authentication module include RSA, ECC, AES, and/or PGP.

[0124] In certain exemplary embodiments, the configura-
tion policies module 514 is operable to store the policies for
what agents are allowed to do at the particular intelligent
sensor or controller implementing the framework 500 and to
store the allowable actions of the framework 500. The policies
for what agents are allowed to do can be based on the repu-
tation of the agent and/or the sensitivity of controls available
atthe intelligent sensor or controller. In certain embodiments,
the configuration policies modules 514 can be called by, for
example, the authorization and authentication module 510

US 2013/0036311 Al

and the agent packaging and instantiation module 522 to
determine if an agent has permission to perform desired
actions.

[0125] In certain exemplary embodiments, the agent pack-
aging and instantiation module 522 is operable to allow a
message body to be passed to the agent execution mechanism
of each agent environment in the agent execution environ-
ment 540. For agents moving between platforms, the agent
packaging and instantiation module 522 can intercept the
normal mechanism, packaging the agent up instead of allow-
ing it to move on its own. In certain embodiments, the agent
packaging and instantiation module 522 is called by the agent
execution environment 540 through information exchange
bus 524 when an agent is ready to be sent from the framework
500 to it next destination node. The network services interface
532 can also send messages from other platforms to the agent
packaging and instantiation module 522 for agents moving
onto the framework 500.

[0126] In certain exemplary embodiments, the information
exchange bus 524 serves as the agent execution environment
interface and is operable to: (1) allow agents in different
environments (e.g., a Python agent environment 542, a JAVA
agent environment 544 (such as JADE (Java Agent Develop-
ment Framework), and/or a binary agent environment 546) to
communicate with each other; (2) allow agents to communi-
cate with agents on other platforms; (3) allow the framework
500 to communicate with its agents; and/or (4) receive infor-
mation from resource monitor 530 indicating that a misbe-
having agent in one of the environments is to be shut down. In
certain embodiments, the information exchange bus 524 can
be called by the agent packaging and instantiation module
522, the network services interface 532 (which can send put
messages for receipt by the packaging and instantiation mod-
ule 522), the resource monitor 530 (which can send shutdown
notice for the agent execution environment 540), and/or the
agent execution environment 540 (which can send messages
for other agent or mobility requests).

[0127] In certain exemplary embodiments, the resource
monitor module 530 is operable to: (1) help ensure that agent
threads do not consume more resources than their contract
asked for; (2) shut down misbehaving threads; and (3) utilize
operating system level thread monitoring and control. In par-
ticular embodiments, the resource monitor module 530 is
called by the agent packaging and instantiation module 522
(which can send messages to the resource monitor module
530 to determine if there are sufficient resources to satisfy an
agent contract) and calls into the information exchange bus
524 to shutdown an agent consuming too many resources.
[0128] In certain exemplary embodiments, the local data
store module 526 is operable to store local information both
about the framework 500 (e.g., which operates as anode in the
power system) and persistent information from agents run-
ning at the node. In particular embodiments, the local data
store module is called by the information exchange bus 524
when an agent wants to store or read longer term information
and/or any other module in the framework 500 requesting
data to be stored.

[0129] In certain exemplary embodiments, the directory
services module 520 is operable to maintain a list of other
platforms, agents, and agents by service provided. In particu-
lar embodiments, the directory services module 520 is called
by the agent packaging and instantiation module 522 in order
to look up the location of a node an agent wishes to move onto
or of a node to which an agent wishes to deliver a message.

Feb. 7, 2013

[0130] Incertainexemplary embodiments, the network ser-
vices interface 532 is operable to receive information that
comes in from the network and route the information to the
information exchange bus 524. The network can be imple-
mented as a Local Area Network (“LAN”) using wired net-
working (e.g., using the Ethernet IEEE standard 802.3 or
other appropriate standard) or wireless networking (e.g. using
one of the IEEE standards 802.11a, 802.11b, 802.11g, or
802.11n or other appropriate standard). Furthermore, at least
part of the network can be the Internet or a similar public
network. In particular embodiments, the network services
interface 532 is called by an external application or platform
(e.g., another node in the system operating with its own
instance of framework 500). The network services interface
can call into information exchange bus 524 (to send message
to be picked up by the agent packaging and instantiation
module 522).

[0131] Incertain exemplary embodiments, agent execution
environment 540 is operable to provide one or more specific
execution environments in which an agent will run (e.g., a
Python agent environment 542, a JAVA agent environment
544 (such as a JADE (Java Agent Development Framework),
binary environment 546, and/or any other agent environment
(such as JINI, Cougaar, Lua, C++, Squawk, and the like). This
allows agents written in different languages to be executed
using embodiments of the disclosed software platform. Fur-
ther, the agents can be written in their native language and do
not require any translation to a common agent environment.
The agent execution environment 540 can be implemented in
part as a plugin or daemon that subscribes to agent instantia-
tion requests from the agent packaging and instantiation mod-
ule 522 via the information exchange bus 524 (e.g., on receiv-
ing a request, the agent execution environment 540 can create
an instance of the environment for that agent or add that agent
to an existing, compatible environment). In particular
embodiments, the agent execution environment 540 is called
by the agent packaging and instantiation module 522 via the
information exchange bus 524.

[0132] The agent execution environment 540 can be con-
trolled by components in the agent packaging and instantia-
tion module 522. For example, an agent execution environ-
ment manager (“AEE manager”) can be part of the agent
packaging and instantiation module 522. After validation and
resource checking has been completed by the agent packag-
ing and instantiation module 522, the AEE manager can
determine the agent execution environment needed by the
agent. For example, for a JADE agent, the AEE manager can:
(1) create a JADE main container; (2) create a JADE manager
class which creates the main container; and/or (3) publish a
message that an agent wants to move onto the JADE AEE. The
JADE main controller is operable to listen for JADE agent
requests. When a JADE agent request is received, if no main
container has been created, the JADE manager can create one.
In order to maintain control, the main container is desirably
not a separate process. In particular implementations, the
JADE main container is part of and started by the JADE
controller. Further JADE containers can join the JADE plat-
form maintained by this main container. In general, a JADE
container is created as a place for JADE agents to reside and
can be started as a separate process for agents moving onto the
platform. The JADE container can point to the main con-
tainer. In some implementations, however, outside agents are
not run on the main container in case they need to be termi-
nated.

US 2013/0036311 Al

[0133] B. Overview of Components of the Agent Transport
Payload
[0134] FIG. 6 is a schematic block diagram illustrating the

agent transport payload 600 (e.g., the data that is transported
with an agent) for an exemplary agent implemented accord-
ing to the disclosed technology.

[0135] Agent transport payload 600 includes destination
identification data 610, source identification data 612, initia-
tor identification data 614, creator identification data 616,
agent code 618, immutable data 620 (sometimes referred to as
“immutable luggage™), mutable data 622 (sometimes referred
to as “mutable luggage”), validation payload data 624, and
execution contract data 626. In particular embodiments, one
or more of the data components of the payload 600 (alone or
in any combination with one another) are signed by the entity
that was responsible for the data. For instance, in particular
embodiments, the destination identification data 610, source
identification data 612, and mutable data 622 are signed by
the most recent host (or node) that handled the agent transport
payload 600 and forwarded it to the current host; the initiator
identification data 614, the validation payload data 624, and
the execution contract data 626 are signed by the initiator
(e.g., the initiator node that originally assigned and transmit-
ted the agent onto the network); and the creator identification
data 616 and the agent code data 618 are signed by the creator
(e.g., the entity that originally created the agent, such as the
utility or utility vendor). Hashes for one or more of the data
components are also included as part of the cryptographic
signatures in the agent transport payload 600.

[0136] In the illustrated embodiment, the destination iden-
tification data 610 comprises data identifying the node the
agent is moving onto. The source identification data 612
comprises data identifying the node the agent is moved from.
The initiator identification data 614 comprises data identify-
ing the host (or node) that instantiated the agent. In general,
the initiator is responsible for setting the available task con-
figuration parameters for the agent, but does not modify the
original code ofthe agent. The creator identification data 616
comprises data for identifying the entity that created the agent
(e.g., the entity that wrote the original code for the agent,
which is typically the utility or a vendor for the utility). The
creator typically does not instantiate the agent (e.g., by setting
its configuration parameters, setting its delivery paths, and
sending the agent) but instead writes the original code for the
agent, which is then used by initiators in the network. The
agent code 618 comprises the executable code that when
executed performs the desired task for the agent (e.g., the data
comprises the actual byte code for the agent that is executed,
for instance, by the agent execution environment of the plat-
form). The immutable data 620 comprises any task configu-
ration parameters that are used to instantiate and properly run
the agent (e.g., the agent path, initial data, initial payloads,
and the like). The data is termed “immutable” because it does
not (or cannot) change during the lifecycle of the agent.
Further, the data container for the immutable data 620 can be
referred to as the immutable data container. The mutable data
622 comprises current state, data, or payloads that the agent
uses to perform its task. The data is termed “mutable” because
it can be changed and is typically changed at every node at
which the agent stops. Further, the data container for the
mutable data 622 can be referred to as the mutable data
container. The validation payload data 624 comprises data
that is used to validate that the agent is authentic and autho-
rized to perform its desired actions. The validation payload

Feb. 7, 2013

624 can include a code checksum, credentials, hashes, and the
like. The execution contract data 626 comprises data indicat-
ing the “contract” the agent makes with the platform it is
moving onto. More specifically, this data can include an iden-
tification of the resources (e.g., memory and CPU) required to
execute and the actions it wishes to perform. Furthermore, in
certain implementations and even though the creator initially
defines the resource requirements, the initiator confirms the
resource requirements needed and modifies them as neces-
sary when it sets the configuration parameters for the agent. In
use, the resource components of the execution contract data
626 can be used by the resource monitor (e.g., resource moni-
tor module 530) while the actions component can be used by
the configuration policy module (e.g., configuration policy
module 514).

[0137] C. Agent Operation Overview

[0138] FIG. 7 is a schematic block diagram illustrating an
exemplary method of creating, tasking, and dispatching an
agent. The method acts illustrated in FIG. 7 can be performed
by a single entity (e.g., using a single computer) or by mul-
tiple different entities (e.g., a creator 720 that is separate from
the initiator 722, as illustrated). At 710, an agent is created.
For example, the executable agent code can be written and
signed by a creator 720. The execution requirements for
executing the agent code can also be determined at this time
and stored as part of the agent (e.g., as part of the execution
contract data 626 of the agent transport payload 600). At 712,
the agent is tasked. For example, the agent can be selected by
an initiator 722 to perform the task for which its agent code is
written. The agent code may be stored locally at the initiator
or in a remote server (such as a central server on the network).
The configuration parameters for the agent and the path for
the agent (e.g., the identity of the nodes on the network that
the agent is to be sent to) can be determined and set as part of
tasking the agent at 712. This information is typically stored
as immutable data (e.g., immutable data 620 stored in an
“immutable data container”) and signed by the initiator. At
714, the agent is sent to its destination. For example, the agent
(e.g., comprising the agent transport payload 600) is trans-
mitted on a network through a network services interface to a
destination node (which may be the first of several destination
nodes for the agent).

[0139] D. Exemplary Operations for Creating, Instantiat-
ing, and Upgrading Agents

[0140] This section introduce more detailed embodiments
of'performing agent-related actions, including agent creation,
agent initiation, agent execution, agent upgrade, and agent
validation.

[0141] 1. Agent Creation

[0142] FIG. 8 is a flow chart showing an exemplary tech-
nique 800 for creating an agent. Typically, the technique 800
is performed by a vendor or utility.

[0143] At 810, an agent type is defined. An agent can
belong to one of multiple agent types. Agent types can be
categorized based on the type of task performed, the network
in which the agent operates, or other such bases. The agent
type can be included as part of the data in the agent transport
payload (e.g., as part of the agent code data 618 or the execu-
tion contract data 626).

[0144] At 812, the agent actions are defined. For example,
the desired agent actions can be written as code that is execut-
able in an agent execution environment and that causes the
processor implementing the platform to perform the desired
task. For example, the agent may be used to obtain data from

US 2013/0036311 Al

sensors at the node, control one or more operations at the node
(e.g., based on the sensed data), or to perform other such
tasks. Exemplary tasks and actions that can be performed by
agents are described in more detail below in Section V. The
agent type can be included as part of the data in the agent
transport payload (e.g., as part of the agent code data 618).
[0145] At 814, resource requirements for performing the
agent action are defined. The resource requirements can be
determined by simulations of the agent actions, emulations of
the agent actions, an analysis of the operations used to per-
form the desired agent actions and associated memory
requirements, or any other suitable mechanism. In particular
embodiments, the resource requirements are defined as part
of the execution contract data (e.g., execution contract data
626) of the agent transport payload.

[0146] At 816, a cryptographic hash of the portion of the
payload created by the creator is signed with the creator’s
private key. The creator’s asymmetric key pair can be X.509
or PGP, for example, and can be managed using the Crypto-
graphic Trust Management system available from Pacific
Northwest National Laboratories. Example encryption tech-
nologies include RSA, ECC, AES, and/or PGP.

[0147] At 818, the new agent (along with its creator signa-
ture) is stored (e.g., on one or more computer-readable stor-
age media). The new agent can be transmitted to administra-
tors in the network and stored locally or can be stored at
locations that are accessed remotely by administrators in the
network.

[0148] In particular implementations, the agent creation
procedure 800 makes calls into one or more of an agent type
list, an agent action list, a resource list, and/or an agent sign-

ing APL
[0149] 2. Agent Initiation
[0150] FIG. 9A is a flow chart showing an exemplary tech-

nique 900 for initiating (or instantiating) an agent. Typically,
the technique 900 is performed by an SOI administrator.
[0151] At 910, an agent is received. For instance, an unini-
tiated agent for performing a particular task can be loaded by
an initiator (e.g., buffered into memory, loaded, or otherwise
accessed for further processing). Or, an agent from another
SOI can be received at a network services interface and
loaded at a node in a local SOI.

[0152] At 912, a determination is made as to whether the
creator signature is valid. For example, the creator’s signed
hash can be verified by the initiator using the creator’s public
key and the resulting hash can be compared to a hash of the
creator-specific code generated by the initiator. In particular
implementations, the signature is verified using the Crypto-
graphic Trust Management system available from Pacific
Northwest National Laboratories, X.509 certificates, or any
other suitable signature encryption/decryption technique. If
the creator signature is not valid, then the agent is discarded at
914; otherwise, the technique continues to 916.

[0153] At 916, a determination is made as to whether the
agent is from another SOI. This determination can be made,
for example, by checking the initiator data in the agent trans-
port payload of the agent. If the agent is from another SOI,
then the SOI is authenticated and authorized at 918. In par-
ticular embodiments, the SOI is authenticated and authorized
by performing the method 1200 shown in FIG. 12 or by
matching the initiating SOI to a list of authorized SOlIs (e.g.,
stored in the trust store 512). If the agent is authorized, then
additional trust information is added to the immutable data at
920. For example, information that approves the agent for use

Feb. 7, 2013

in the local SOl is added. If the agent is not from another SOI,
then the technique 900 proceeds at 922.

[0154] At 922, the path for the agent is determined. For
example, if the agent is being used to obtain information from
a particular node or to control operation at a particular node,
the path (e.g., the identity or network address for the node)
can be determined. Or, if the agent is to be sent to multiple
nodes, a list of the multiple nodes (e.g., the identities or
network addresses for the multiple nodes) can be determined.
This information can be determined, for instance, by access-
ing a directory service module (e.g., the directory service
module 520, which comprises network identification infor-
mation for the nodes in the network).

[0155] At 924, the agent transport payload is constructed
and stored. For example, one or more of the initiator data 614,
the immutable data 620 (including the agent path and the
executable code for performing the desired task for the agent),
the validation payload data 624, or the execution contract data
626 are set. Further, the destination data 610, the source data
612, and/or the mutable data 622 can be set. Any one or more
of these data components or combinations thereof can be
signed by the initiator.

[0156] At 926, with the agent transport payload con-
structed, the agent is transmitted to the one or more destina-
tion nodes on its agent path (e.g., via the network services
interface 532).

[0157] FIG. 9B is a flow chart showing an exemplary tech-
nique 950 for receiving an agent (e.g., a returning agent after
being transmitted using technique 900, or any other agent)
[0158] At 960, the agent is received (e.g., buffered, loaded
into memory, or otherwise accessed for further processing).
For example, the agent can be loaded via the network services
interface 532.

[0159] At 962, a determination is made as to whether the
agent code has been tampered with. For example, a crypto-
graphic signature sent with the agent transport payload can be
checked and verified (e.g., using any of the encryption/de-
cryption techniques mentioned above and using data stored in
the trust store 512). In particular embodiments, a hash of the
agent code can be computed and compared to a signed hash
for the agent code sent with the agent transport payload. The
hash for the agent code can be signed by one or more of the
previous host (e.g., the sender), the initiator, or the creator,
and can be decrypted using the public keys for these entities.
The signed hash for any one or more (or all) of the sender, the
initiator, or the creator can be used to verify the integrity of the
agent code. For example, only a hash signed by the creator can
be used to verify the agent code. If the agent code is not valid,
the agent is discarded at 964; if the agent code is valid, the
technique 900 continues at 966.

[0160] At 966, a determination is made as to whether the
identity of the initiator is valid. For instance, the trust store
512 can be checked to determine whether the identity of the
agent’s initiator matches an initiator in the trust store. If the
initiator identity is not valid, the agent is discarded at 968; if
the initiator identity is valid, the technique 900 continues at
970.

[0161] At 970, a determination is made as to whether the
initiator is authorized to dispatch an agent to the host and
whether the SOI of the initiator matches the SOl of the device.
For instance, the trust store 512 can be checked to determine
whether the agent’s initiator is an authorized initiator. If the
initiator is not authorized, the agent is discarded at 972; if the
initiator is authorized, the technique 900 continues at 974.

US 2013/0036311 Al

[0162] At 974, a determination is made as to whether the
immutable data is authentic. For instance, a hash ofthe immu-
table data can be computed and compared to a signed hash for
the immutable data sent with the agent transport payload. The
hash for the immutable data can be signed by one or more of
the previous host (e.g., the sender), the initiator, or the creator,
and can be decrypted using the public keys for these entities.
The signed hash for any one or more (or all) of the sender, the
initiator, or the creator can be used to authenticate the immu-
table data. For example, only a hash signed by the initiator can
be used to verify the immutable data. If the immutable data is
not authentic, the agent is discarded at 976; if the immutable
data is authentic, the technique 900 continues at 980.

[0163] At 980, a determination is made as to whether the
mutable data is authentic. For example, a hash of the mutable
data can be computed and compared to a hash sent with the
agent transport payload. For example, the hash for the
mutable data can be signed by the previous host (e.g., the
sender) and can be decrypted using the public key for the
sender. If the mutable data is not authentic, the agent is dis-
carded at 982; if the mutable data is authentic, the technique
900 continues at 984.

[0164] At 984, data is extracted from the agent. For
example, data is parsed and extracted from the agent transport
payload.

[0165] In particular implementations, the agent creation
procedure 900 can be called by calls through the network
(e.g., network services interface 532) and can makes calls into
one or more of the agent packaging and instantiation module
522, the authentication and authorization module 510, the
directory service module 520, and/or the local store 526.

[0166]

[0167] FIG. 10A is a flow chart showing an exemplary
process 1000 for executing an agent. Typically, the process
1000 is performed by a host on the network (e.g., an intelli-
gent sensor or intelligent controller (or other node on the
network) that includes computing hardware for implement-
ing the agent-based software platform (e.g., the software plat-
form 500)). In general, the agent execution process 1000
includes a set of tasks which first verifies the authorization
and authenticity of the agent prior to actual execution. Once
execution has been competed, data is collected, a new path is
selected, the agent payload is reconstructed, and the agent
moves to another device.

[0168] At1010, anagent is received at the current host. For
instance, the host can receive the agent transport payload for
the agent over a network (e.g., via network services interface
532) and identify the host as its destination (e.g., from the
destination data 610). The agent transport payload can then be
loaded by the host (e.g., buffered into memory, loaded, or
otherwise accessed for further processing).

[0169] At 1012, the agent is validated using an authentica-
tion and authorization process (e.g., the authentication and
authorization process 1200 shown in FIG. 12 and discussed
below).

[0170] At 1014, a determination is made as to whether the
agent is an agent upgrade. If so, then an agent upgrade process
is performed at 1016 (e.g., the agent upgrade process shown
in FIG. 11); otherwise, the process proceeds to 1018.

[0171] At1018, the agent code is executed, resulting in the
agent performing its intended task. For example, in particular
embodiments, the agent code data 618 can be parsed from the

3. Agent Execution

Feb. 7, 2013

agent transport payload and executed in the appropriate agent
execution environment (e.g., agent execution environment
540).

[0172] FIG. 10B is a flow chart showing an exemplary
technique 1050 for processing an agent that has completed its
task. Typically, the technique 1050 is performed by the same
host on the network that received the agent and initiated its
execution.

[0173] At 1060, an indication that the agent has completed
its task is received (e.g., a flag, variable, or other parameter is
set).

[0174] At 1062, information related to the performance of
the task is collected. For instance, the data requested by the
agent may be stored in a certain file or memory location,
which is accessed so that the data can be loaded and stored as
part of the mutable data 622 in the agent transport payload.
[0175] At 1064, the path for the agent is determined. This
information can be determined, for instance, by accessing the
immutable data (which lists the destination node(s) for the
agent) and/or accessing a directory service module (e.g., the
directory service module 520, which comprises network
identification information for the nodes in the network).
[0176] At 1066, the agent transport payload is constructed
and stored. For example, the mutable data (e.g., the mutable
data 622) can be updated to include the information collected
at 1062. Further, the current host can sign the mutable data
with a cryptographic signature

[0177] At 1068, with the updated agent transport payload
constructed, the agent is transmitted (e.g., via the network
services interface 532) to the next destination node on its
agent path (or back to the initiator if there are no further
destination nodes).

[0178] Inparticular embodiments, the agent execution pro-
cess is called by the network module (e.g., network services
interface 532) when an agent arrives at the host (or node) of
the network. The agent execution process can call into one or
more of a validation and authentication process (e.g., authen-
tication and authorization process 1200 shown in FIG. 12),
agent upgrade process (e.g., agent upgrade process 1100
shown in FIG. 11), agent execution process (e.g., an execute
agent process performed by the agent execution environment
540), network process (e.g., a process for moving the agent to
a next device performed by the network module 532), infor-
mation exchange bus (e.g., a process for collecting data per-
formed by the information exchange bus 524), directory ser-
vices process (e.g., a process for selecting a new device
performed by the directory service module 520), and/or pay-
load construction process (e.g., a process for payload con-
struction performed by agent packaging and instantiation
module 522).

[0179] 4. Agent Upgrade

[0180] FIG. 11 is a flow chart showing an exemplary pro-
cess 1100 for upgrading an agent. Typically, the process 1100
is performed by a host on the network (e.g., an intelligent
sensor or intelligent controller (or other node on the network)
that includes computing hardware for implementing the
agent-based software platform (e.g., the software platform
500)). In particular implementations, this is a common mod-
ule for all platforms and checks for an upgrade agent. If the
agent is authentic and authorized, this process then upgrades
the agent.

[0181] At 1110, a determination is made as to whether the
agent upgrade is for an agent on the current host. If the
upgrade agent is not for an agent on the current host, then the

US 2013/0036311 Al

agent upgrade is discarded at 1112; if the upgrade agent is for
an agent on the current host, then the process proceeds at
1114.

[0182] At1114, a snapshot of the state of the agent is made
(e.g., by storing information indicative of the current state of
the agent, which may be currently executing). The agent can
then terminate.

[0183] At 1116, a determination is made as to whether the
agent has terminated. An agent that does not support upgrade-
in-place functionality, for example, may not terminate. If the
agent has notterminated, then the agent is forcibly terminated
at 1118 (e.g., by the operating system or the platform forcibly
stopping further execution of the agent code). If the agent has
terminated, then the method continues at 1120.

[0184] At 1120, the agent upgrade is performed and the
agent is reinitiated. The agent upgrade can be performed by
replacing one or more components (or the entirety) of the
agent code and/or adding new agent code. Re-initiation can
occur by the upgraded agent being executed in its appropriate
agent execution environment.

[0185] At 1122, a determination is made as to whether the
upgraded agent has started executing again. If so, then, at
1124, the state of the agent is restored from the stored snap-
shot; otherwise, the agent will be restarted from a clean data
store when it starts again.

[0186] In particular implementations, the agent upgrade
process is called by the agent packaging and instantiation
module 522. The agent upgrade process can call into one or
more of an agent snapshot process, a resource manager pro-
cess (e.g., an “agent run check” process and/or “agent termi-
nation” process performed by the resource manager), agent
execution process (e.g., a “start new agent” process or
“restore agent from snapshot” process performed by the agent
execution environment 540)

[0187] 5. Agent Validation

[0188] FIG. 12 is a flow chart showing an exemplary tech-
nique 1200 for performing an authentication and authoriza-
tion process. Typically, the technique 1200 is performed by a
host on the network (e.g., an intelligent sensor or intelligent
controller (or other node on the network) that includes com-
puting hardware for implementing the agent-based software
platform (e.g., the software platform 500)) when an agent is
received. In particular embodiments, the technique 1200 is
performed by the authentication and authorization module
510 in the software platform 500. In particular implementa-
tion, the authentication and authorization process 1200 is part
of a common module for validation of authentication, autho-
rization, and identity.

[0189] At 1210, a determination is made as to whether the
agent signature is valid. For example, a cryptographic signa-
ture sent with the agent transport payload can be checked and
verified (e.g., using public key data stored in the trust store
512). The agent signature can be the signature from one or
more of the creator, the initiator, and/or the previous host
(e.g., the sender). If the agent signature is not valid, the agent
is discarded at 1212; if the agent signature is valid, the tech-
nique 1200 continues at 1214.

[0190] At 1214, a determination is made as to whether the
identity of the initiator is valid. For instance, the trust store
512 can be checked to determine whether the identity of the
agent’s initiator matches an initiator in the trust store. If the
initiator identity is not valid, the agent is discarded at 1216; if
the initiator identity is valid, the technique 1200 continues at
1218.

Feb. 7, 2013

[0191] At 1218, a determination is made as to whether the
initiator is authorized to dispatch an agent to the host and
whether the SOI of the initiator matches the SOl of the device.
For instance, the trust store 512 can be checked to determine
whether the agent’s initiator is an authorized initiator. If the
initiator is not authorized, the agent is discarded at 1220; if the
initiator is authorized, the technique 1200 continues at 1222.
[0192] At 1222, a determination is made as to whether the
configuration data included with the immutable data is
authentic. For instance, a hash of the configuration data can be
created and compared to a decrypted hash for the configura-
tion data sent with the agent transport payload. The hash for
the configuration data can be signed by one or more of the
previous host (e.g., the sender), the initiator, or the creator,
and can be decrypted using the public keys for these entities.
The signed hash for any one or more (or all) of the sender, the
initiator, or the creator can be used to authenticate the con-
figuration data. If the configuration data is not authentic, the
agent is discarded at 1224; if the immutable data is authentic,
the technique 1200 continues at 1226.

[0193] At 1226, a determination is made as to whether the
mutable data is authentic. For example, a hash of the mutable
data can be created and compared to a hash sent with the agent
transport payload. For example, the hash for the mutable data
can be signed by the previous host (e.g., the sender) and can
be decrypted using the public key for the sender. If the
mutable data is not authentic, the agent is discarded at 1228;
if the mutable data is authentic, the technique 1200 continues
at 1230.

[0194] At 1230, a determination is made as to whether
resources are available to perform the agent’s task. For
example, the resource requirements stored as part of the
execution contract data 626 in the agent transport payload can
be extracted and compared to available resources using infor-
mation from the resource monitor 530. If sufficient resources
do not exist, the agent is discarded at 1232; if sufficient
resources exist, then the technique 1200 generates an indica-
tion that the agent is authorized and authenticated (e.g., by
setting a flag, variable, or other parameter)

[0195] In particular implementations, the process 1200 is
called by an agent initiation process (e.g., agent initiation
process 900 shown in FIG. 9) and/or by an agent execution
process (e.g., agent execution process 1000 shown in FIG.
10). The authentication and authorization process 1200 can
call into one or more of the following: a signature validation
process, an authorization validation process, a data authori-
zation validation process, a data authentication process, and/
or a resource manager process (e.g., an “are resources avail-
able” process performed by the resource monitor module
530).

V. Exemplary Applications for Embodiments of the
Disclosed Intelligent Sensors and Controllers

[0196] In this section, exemplary applications for the dis-
closed agent-based, intelligent sensors and intelligent con-
trollers are described. The applications disclosed in this sec-
tion are not to be construed as an exhaustive list, but are
illustrative of the operation and capabilities of the disclosed

technology.

[0197] A. Distributed Generation as a Forecastable
Resource

[0198] Currently, there is uncertainty about the integration

of distributed resources such as rooftop solar panels, end-
customer wind turbines, end-customer battery storage, and

US 2013/0036311 Al

plug-in hybrid electric vehicles (“PHEVs”). For example, an
electricity generator plugged into the electric power system at
the distribution layer is treated as “negative” load. This means
that it is not actively accounted for and is not integrated into
the electricity operations planning like a bulk power genera-
tor. Specifically, even when ample capacity is available from
distributed resources in the distribution system, the current
system is unable to accommodate this capacity by flowing
power from the distribution system back to the transmission
system and to a different location where the power may be
needed.

[0199] One exemplary application of the disclosed technol-
ogy is to forecast and aggregate distributed resources that are
connected (electrically) to the distribution system. In one
implementation, this application can be performed using an
embodiment of the disclosed software framework and can
have the following components: (1) a forecaster/historian
agent located at the distribution substation; (2) resource avail-
ability agents that gather a list of distributed resources and
monitor their status in real time; and (3) resource integration
agents that are responsible for collecting resource generation
information. The collected information can then be made
available to the forecaster located at the distribution substa-
tion.

[0200] For instance, the distributed resource forecaster can
collect information generated by the agents and use this infor-
mation for generating forecasts for the resources at a variety
of future times (e.g., 60 minutes ahead, 360 minutes ahead, 24
hours ahead, or any other forward-looking time interval). A
variety of forecasting techniques can be used to generate the
forecast as are known in the art. These forecasts can be made
available to the utility system operations center and can be
treated similar to a forecast coming from a bulk power gen-
erator.

[0201] B. Sequencing Load in the Distribution System
[0202] Consumer loads are largely resources that are not
under the control of the utility. A demand/response architec-
ture uses two-way communication between the utilities and
consumers and allows the utility to shed certain loads during
peak loads. One side effect of this type of technology, how-
ever, is that the loads get synchronized and the resulting
power draw on the feeders has large peaks and valleys. This
causes almost the opposite effect of the desired resource
management goals.

[0203] To control consumer loads more effectively, one
application of the disclosed technology is to use the agent-
based framework to sequence certain types of consumer base
loads, providing a more stable equivalent load to the sub-
transmission system. For instance, consider a neighborhood
in which each of the water heaters has an intelligent controller
allowing for intra-feeder communication. Through an auto-
matic negotiation process between two or more controllers,
the intelligent controllers can determine that they have peak
usage in the morning and rather than all turning on at the same
time, they can generate a time-slicing sequence that allows
the water heaters to heat water one (or two, or more) at a time.
Additionally, the intelligent controllers can be aware of typi-
cal usage times and pre-heat in a similar fashion. In particular
implementations, if the temperature drops below some
threshold, a device can drop out of the time-slicing mode and
activate the water heater. Overall, however, the general use
would be coordinated. Such time-slicing can not only be
applied to water heater operation, but also to other controlled
appliances (e.g., HVAC systems, dishwashers, washer and

Feb. 7, 2013

dryers, battery chargers, and the like). Further, a substation
can receive knowledge of the time-slicing behavior on a
feeder and use it for its own planning needs.

[0204] In one example implementation, an agent-based
framework can provide one or more of the following capa-
bilities for performing load sequencing: (1) consumer-level
distributed agent technology that can describe a load’s char-
acteristics (e.g., time of day, duration, frequency, seasonal
adjustment, and the like); (2) sequencing and voting to
develop a time-slicing scheme (e.g., based on load character-
istics); and (3) automatic grouping of intelligent sensors and/
or controllers into “smart” groups (e.g., based on the number
of sensors and controllers in group, the sensors and control-
lers being on the same feeder, and the like).

[0205] An exemplary embodiment of a load sequencing
method is described below with respect to FIGS. 13A and
13B.

[0206] C. Goal-Based Demand Response

[0207] There are two types of demand-response schemes
currently employed in the electric power system. The tradi-
tional demand-response schemes are based on direct load
control where a utility triggers a responsive asset to turn on
and off by means of a communication channel. A second type
of demand response uses a price signal to elicit customer
behavior that results in a reduction of load through voluntary
means. Note that while direct load control is deterministic,
price-signal-based demand response is non-deterministic.
[0208] Inoneexemplary implementation, the disclosed dis-
tributed agent technology is used for a collaborative demand
response scheme with interacting agents that work together to
achieve a demand management goal and confirm the amount
of load reduction to the rest of the utility network, thereby
alleviating the non-deterministic nature of price based
demand response. For example, a zone controller can be
identified as an entity that sets demand reduction goals for the
zones that are under its control/influence. The zone controller
can assign a load reduction goal to its subsidiaries, and this
zone reduction goal can flow through the system from a first
tier (which could be interpreted as a region controlled by a
balancing authority) to one or more second-tier zones (e.g.,
utilities) and down to lower tiers (e.g., individual distribution
substations). The agent framework can be extended to equip-
ment located at customer premises as well. At each tier, the
zone controllers can be implemented as “software agents”.
The software agents can collaborate with each other,
exchange information (securely), and iterate until desired
goals are reached.

[0209] In particular implementations, the amount of
demand response achieved is collected and communicated up
the zonal hierarchy to the first-tier zone controller. Therefore,
the zone controller does not need to rely on metering obser-
vations to see whether the demand response scheme is work-
ing. Further, agents for each household can have different
settings for different priorities (maintain power level vs. take
advantage of price). Aggregate results of the interaction of
those agents can be the response for the “neighborhood”.
[0210] In some implementations, the agents at the resi-
dences collaborate with each other to prevent oscillatory load
behaviors by coordinating when loads come online and go
offline. The agents may also use a price signal for the com-
munication of a demand response goal between tiers in the
zonal hierarchy.

[0211] In particular implementations, the collaborative
demand response system is implementable at various layers

US 2013/0036311 Al

of the electric power system, capable of communicating
upward or downwards in the hierarchy, capable of moving
and deploying agents based on other goals throughout the
system (e.g., triggering of PHEVs to charge, or battery stor-
age elements to charge), capable of crossing (or at least com-
municating across) organizational boundaries, and/or
capable of accomplishing a goal/task in a short period of time
(e.g., less than 300 seconds).

[0212] In particular implementations, the zone controller
agent is configured to communicate with agents in the levels
above and below and/or to receive state information for
agents below it in the hierarchy in order to form its state which
it then reports to the hierarchy above. Further, the zone con-
troller agent can be configured to receive a demand response
goal from an agent higher in the hierarchy (which could be a
human operator). The agent can then access its resources and
task other agents to determine what its potential response can
be. Further, the zone controller agent can be configured to
receive a task from the above hierarchy and to distribute this
to agents below. Further, the zone controller can be config-
ured to request agents below for an estimate on demand
reduction (which may ask agents below them), to aggregate
the estimates, and to return the aggregated estimate.

[0213] D. Automatic Topology Discovery

[0214] Topology refers to the interconnection of resources
in an electrical network. Traditionally, engineers explicitly
define each of the interconnect possibilities. For instance, a
SCADA engineer typically has to explicitly define each “tag”
(voltage, current, and so on) within a substation, along with
what electrical device it corresponds to (transmission line 47,
or breaker 134, etc.). This process of explicitly defining the
tags is both time consuming and susceptible to being quickly
out-of-date. The difficulty in maintaining definitions for all
tags in the system becomes more challenging when one con-
siders a future electrical system filled with distributed gen-
erators constantly being added to the system and causing a
need for updates to the network settings.

[0215] In embodiments of the disclosed agent-based sys-
tem, agents are used to facilitate the automatic discovery of
data and topological interconnections. In particular imple-
mentations, an agent is programmed to have (or collect)
knowledge of the electrical characteristics of the asset it is
associated with, the location of the asset in the network,
and/or the physical world identification of the asset. Further,
the agent is programmed to advertise its available data upon
request. Such embodiments can be used to reduce the barriers
to wide area management as well as localized distribution
level distributed generation.

[0216]

[0217] State estimation is a tool currently used by utilities
in the control center to evaluate the stability of the electrical
grid. In embodiments of the disclosed agent-based system,
agents are used to collect state data. For example, the state
eigenvalues (or other values) for a given substation can be
measured directly in real-time by agents on the one or more
feeders of the substation. These eigenvalues can then be trans-
ferred to the control center for a real-time state view of the
power system.

[0218]
[0219] Fault location typically refers to the ability to deter-
mine the physical location of the fault. Simple fault locators
are attached to aerial power system lines and will trip a flag (or
light up with blinking LEDs) during an unusually high cur-

E. Localized State Estimation

F. Automatic Fault Location

Feb. 7, 2013

rent event, such as a short circuit. A lineman will use these
indicators to manually locate a fault (typically on a distribu-
tion network).

[0220] In exemplary embodiments of the disclosed agent-
based system, agents are used to perform fault location on a
distribution network. In certain implementations, the agent
sensors have knowledge of their location on the electric
power topology. Inter-agent communication during fault
events could then be used to locate the effected sensors during
an event. This information can assist utilities in the mitigation
of'a distribution-level outage, as well as provide a foundation
technology for automatic outage management. In such imple-
mentations, the agents are configured to collect or have
knowledge of their location on the power system, to have
network connectivity, and to have a process for sending infor-
mation about its state and location to a utility.

[0221] G. Distribution-Level Wide-Area Protection
[0222] Distribution refers to the low-level power system
supply which feeds consumers, such as what is connected to
the average house. Due to the numerous connections, the
distribution network utilizes low cost electrical protection
devices such as fuses and recloses. These devices have per-
formed satisfactory in the past; however, they have shortcom-
ings for needs of consumer-level distributed generation.
[0223] In exemplary embodiments of the disclosed agent-
based system, an agent is used to provide information that
identifies the status of the distribution network at various
nodes on the network. Such information could be collected by
a common aggregator with the ability to detect abnormal
conditions. If such a condition is detected, a backchannel
communication can inform an agent on a distributed genera-
tor’s controller to stop or to switch from delivering power into
the power system to delivering power to one or more homes
directly connected to the generator, thus mitigating a power
system hazard.

[0224] In particular implementations, load sensor are
capable of publishing load parameters and allowing for
remote control during safety events, generation sensors are
capable of being coordinated, and a sequencer sensor is able
to coordinate generation and load sensors as well as integrat-
ing with any existing SCADA infrastructure.

V1. Example Implementation of an Agent for Performing
Load Sharing

[0225] This section describes exemplary methods for per-
forming load sharing according to embodiments of the dis-
closed technology. The exemplary methods are described
using the example of a substation that provides power to
several homes. The substation receives energy goals from
upstream (e.g., from a regional distributor) which the substa-
tion must meet to ensure smoother energy use throughout the
grid. When the substation detects that energy use will be
above the goal, it can send conserve signals to its houses
asking them to reduce consumption. In this example, a house
receives its energy from the substation. A house can have
several appliances (e.g., an HVAC, refrigerator, and the like)
as well as a base load which takes into account all other uses
(e.g., lighting, television, and the like). In the discussion
below, only water heaters are considered as controllable
devices, but the agent-based scheme can be adapted to include
other controllable devices as well (e.g., an HVAC system,
electric vehicle chargers, and the like). In this example, the
water heater draws power from its house. The water heater
can be in one of two states: waiting or heating. While waiting,

US 2013/0036311 Al

the water heater monitors the energy of the water (e.g., the
temperature of the water, or a value based on the temperature
and volume of the water in the heater) to determine if the
energy is at its goal. If the water energy drops below a tank
energy goal, then the heater enters the “heating” state, where
it heats the water until it reaches the goal. Once the energy of
the tank is at the goal, it goes back to the “waiting” state. The
water heaters in this example also have a “low water mark™
signal, which indicates that the tank energy is critically low. In
this example, if a water heater is under its low water mark, its
house will ignore a conserve request. Further, in this example,
the inhabitants of the house are assumed to “consume” the
resources of the house. For instance, each resident has a
schedule for when they will take a shower which has the effect
of reducing the energy in the water heaters tank.

[0226] The example discussion in this section uses a
“token”-based system. The token can be a software represen-
tation of a token and can be transmitted to agents associated
with other homes. A house possessing a token (e.g., a house
being assigned to the representation of the token) can draw its
requested load from the substation. A house not possessing a
token cannot draw its requested load from the substation.
Furthermore, in the example below, a token allows a house to
draw its required load for a set number of time cycles (e.g.,
2-100 time cycles). The value of a token can begin at the total
number of time cycles available with the token (e.g., 10). As
atoken is used for a given time cycle, the value of the token is
decremented (e.g., decremented by one). When the token’s
value is 0, the token expires. Each token can have the same
starting value, or can be individually tailored for a particular
energy usage (e.g., the token can represent the number of time
cycles necessary for raising the energy level of a water heater
from its current state to its desired energy level).

[0227] Inone exemplary embodiment, an agent associated
with the water heater is responsible for determining whether
to operate the water heater or not. In one implementation, the
decision-making process is performed at fixed time intervals
(e.g., every 10 minutes, 5 minutes, 1 minute, 30 seconds, 10
seconds, 1 second, or any other period of time). For every time
interval (also referred to as “ticks” or “time cycles™), there is
a sequence of agent actions that happen. Water heaters in a
waiting state enter a heating state if their tank energy is below
goal. Water heaters in a heating state enter a waiting state if
the tank is at its respective goal. Next, houses estimate their
energy usage based on the state of their water heaters and their
base energy usage. The substation receives these estimates
and compares them against their load goal. If the total is over
the load goal, the substation enters a conserve state. The
substation in the conserve state sends a “conserve” signal to
its houses and enters a monitor state if their estimate is under
goal or a conserve timeout has elapsed. In certain embodi-
ments, a house receiving a conserve signal polls its appliances
as to their ability to conserve. Water heaters willing to con-
serve are maintained or switched back to their wait state.
[0228] Several different exemplary techniques can be used
by the agent at a house to control energy usage and attempt to
keep the usage under the goal. Three exemplary techniques
are described below: the global signal technique, the indi-
vidual signal technique, and the cooperative technique. It
should be understood that these techniques are introduced for
illustrative purposes, and that additional or variations of these
techniques are possible.

[0229] According to the global signal technique, if the sub-
station detects that energy use is over goal, then for some fixed

Feb. 7, 2013

period (e.g., 20 minutes, 10 minutes, 5 minutes, or any other
period of time), the substation will send a conserve signal
(such as a “high energy price” signal) to the houses that it
controls (e.g., all houses). At each time cycle, a house can
decide whether or not to honor the request. For instance, if
“low water mark” signals are being honored, then the house
will always ignore a conserve request if its water heaters
energy is too low.

[0230] According to the individual signal technique, at
every time cycle that a substation detects energy use is over
goal, it sends a conserve signal (such as a “high energy price”
signal) individually to all houses that it serves. If a house
chooses to respect the signal, then the house controls the
water heater so it is shut off for some fixed period (e.g., 20
minutes, 10 minutes, or any other period of time). The con-
serve signal can be ignored if the “low water mark” is
reached.

[0231] According to the cooperative technique, household
agents cooperate with one another in order to meet the sub-
station’s energy goal. For example, using a set of rules com-
mon to all the agents (and defined, for example, in the agent
code 618 of the agent transport payload), an agent individu-
ally decides whether or not to claim an energy use token (e.g.,
for a current time cycle or a next upcoming time cycle). While
the agent maintains the token, that house is allowed to meet its
energy needs.

[0232] According to one embodiment of the cooperative
strategy, the houses follow the rules and respect assignment of
the tokens. The global and individual techniques can also be
run this way, but this leads to poor behavior. For instance, if all
houses respect the conserve signal, then they will eventually
synchronize, causing them all to turn on at once. If this causes
the energy goal to be exceeded, then the substation will send
out a conserve signal, causing all water heaters to turn off. The
resulting pattern is one of spikes where all heaters turn on,
then periods of inactivity while all heaters conserve. To over-
come this problem, each house could have a random prob-
ability during each time cycle of respecting the conserve
signal.

[0233] In particular embodiments, household agents oper-
ating using the cooperative technique use a “belief-desire-
intent” model of agent behavior. According to this model, the
“belief” of the agent is based on states of the other agents
(e.g., energy use, priority), the “desire” of the agent is based
on the goals of the agent (e.g., to meet its substation’s energy
use goal while still maintaining quality of service to its resi-
dent), and the “intent” of the agent is based on their available
actions (e.g., run their appliances or to conserve).

[0234] In each time cycle, the household agents for the
substation send their estimated energy use and their priority.
In one implementation, the priority sent by an agent is (or
corresponds to) the energy level of the water heater(s) in its
associated home. This information forms each agent’s beliefs
about the current needs of their neighbors. Each agent then
evaluates these beliefs against the desire to meet the energy
goal of the substation while also keeping quality of service for
their residents. To do this, each agent can operate using a
common set of rules.

[0235] FIGS. 13A and 13B illustrate one exemplary pro-
cess 1300 used by an agent to determine whether it should
take an energy-use token.

[0236] At 1310, an energy goal is received. For instance,
the energy goal can be sent from the substation and stored
locally at the agent’s host until changed.

US 2013/0036311 Al

[0237] At 1311, information from the other houses is
received. The information received can include, for example,
the identity of the house, the estimated energy use for the
house, the priority of the house (e.g., the energy level of the
water heater), the low water mark for the house, the tank
energy goal for the house, and an indication of whether the
house is using a token for the upcoming cycle (e.g., the next
time cycle).

[0238] At 1312, the base load required from each house is
subtracted from the energy goal.

[0239] At 1314, the energy for houses with a token for the
upcoming time cycle is subtracted from the remainder of the
energy determined at 1312.

[0240] At 1316, a determination is made as to whether any
energy remains. For example, in particular implementations,
a determination can be made whether the remaining energy is
sufficient to perform any of the estimated energy usages from
the remaining houses without tokens. If there is insufficient
energy, then the procedure is complete, and the houses with
tokens run their appliances in the next time cycle but decre-
ment their token value at 1317; if energy remains, the process
proceeds at 1318.

[0241] At1318, alist of houses with no token is generated.
[0242] At 1320, a determination is made as to whether any
houses in the list are below the low water mark. If one or more
houses are below the low water mark, then the process pro-
ceeds at 1322; otherwise, the process proceeds at 1332.
[0243] At 1322, the house having a current energy level
farthest from the low water mark is selected.

[0244] At 1324, a determination is made as to whether the
selected house is the house controlled by the agent. If so, the
agent claims a token at 1326 and subtracts its energy usage
from the remaining energy at 1328; otherwise, the agent just
subtracts the selected house’s energy usage from the remain-
ing energy at 1328.

[0245] At1329, the selected house is removed from the list.
[0246] At 1330, a determination is made as to whether any
energy remains. For example, in particular implementations,
a determination can be made whether the remaining energy is
sufficient to perform any of the estimated energy usages from
the remaining houses without tokens. If there is insufficient
energy, then the procedure is complete, and the houses with
tokens run their appliances in the next time cycle but decre-
ment their token value at 1317; if energy remains, the process
repeats at 1320.

[0247] At 1332, a determination is made as to whether any
houses in the list are below their tank energy goals. If one or
more houses are below their respective tank energy goals,
then the process proceeds at 1334; otherwise, the process
proceeds at 1317, where houses with tokens run their appli-
ances in the next time cycle but decrement their token value.
[0248] At1334,the house having atank energy goal closest
to (or farthest from) its respective tank energy goal is selected.
[0249] At 1336, a determination is made as to whether the
selected house is the house controlled by the agent. If so, the
agent claims a token at 1338 and subtracts its energy usage
from the remaining energy at 1340; otherwise, the agent just
subtracts the selected house’s energy usage from the remain-
ing energy at 1340.

[0250] At1342, the selected house is removed from the list.
[0251] At 1344, a determination is made as to whether any
energy remains. For example, in particular implementations,
a determination can be made whether the remaining energy is
sufficient to perform any of the estimated energy usages from

Feb. 7, 2013

the remaining houses without tokens. If there is insufficient
energy, then the procedure is complete, and the houses with
tokens run their appliances in the next time cycle but decre-
ment their token value at 1317; if energy remains, the process
repeats at 1332.

[0252] Acting by the rules set forth in process 1300 means
that priority is given to those houses with the worst quality of
service. This prevents “sacrificing” a house so that others may
reach their goals faster. It also means that once a minimum is
met, priority goes to the houses closest to reaching their goal
in order to take them out of the equation. This simplifies the
latter stages of planning.

[0253] To test the exemplary method shown in FIG. 13, a
simulation was performed. In the simulation, the water heater
was modeled as a 40 Gallon tank with two 4.5 KW heating
elements. The first law of Thermodynamics, conservation of
energy, provides the basis for calculating the water heater’s
load characteristics. The change in enthalpy is the energy
required to heat the water to the desired 50° C. output based
on the following equation:

AH=mc, AT (€8]

where AH is the change in enthalpy (J), m is the mass of the
water (kg), ¢, is the specific heat of water at constant pressure
(J/mol*K), AT is the change in temperature (° C.).

[0254] For the 160 L tank (roughly equivalent to 40 Gal-
lons) with an incoming water temperature of 10° C. and
outgoing temperature of 50° C., the change in energy is
approximately 30.8 MJ. Using the tank’s 4.5 KW heating
element will thus take approximately 114 minutes to heat the
tank from an initial state.

[0255] To model the usage requirements, the following
parameters were used. The standard shower consumes 12
gallons of hot water, which in turn requires 9.6 MJ of energy
to restore the tank to its heated condition, or 35.6 minutes to
return a fully heated state. In other words, if the shower lasted
5 minutes, during that time the tank experienced a loss of
energy at the rate of approximately 32 KW.

[0256] The simulation was performed considering a single
substation. Runs were done with the substation having 5
houses for each of the three techniques introduced above.
Energy goals of 30, 35, and 45 were used. Each house had a
baseload of 5 kW/s and each water heater consumed 4.5 kW/s
when heating water in the tank. Residents took showers ran-
domly between 6 a.m. and 7 a.m. with arandom duration from
5 to 15 minutes. However, the behavior of the residents was
consistent for each strategy during a run. The worst case for
every system is when there is only enough room in the energy
goal to run one house’s water heater.

[0257] As shown in Table 1 below and in FIG. 14, the
cooperative strategy performed in a more stable way than the
other two strategies by avoiding peaks in demand. In particu-
lar, FIG. 14 shows a representational snapshot of behavior for
the global signal technique, the individual signal technique,
and the cooperative technique.

[0258] Asshown in graph 1410, the global signal technique
exhibited behavior that is desirably avoided: large initial
spikes which trigger a conserve signal. After the 10-minute
wait time, there was again a spike as all the water heaters turn
on again then settle into chaotic behavior as water heaters
decide to honor the signal or not.

[0259] As shown in graph 1420, the individual signal tech-
nique still exhibited an initial peak, but the behavior is still
much smoother than the global signal techniques. The num-

US 2013/0036311 Al

ber of time cycles the energy usage was over the goal is still
very high especially when water heaters fall below their low
water mark.

[0260] As shown in graph 1430, the cooperative technique
exhibited stable behavior and stayed at the load goal or below
until all water heaters had recharged themselves. The model
created for this simulation was not intended to be an exhaus-
tive recreation of the power grid.

TABLE 1

Average peak energy use, time cycles over load goal, and recovery
time for different agent operational techniques given a load goal

Energy Peak Time Cycles Recovery
Goal Technique Energy Above Goal Time
40 Global-signal 64.7 6633.8 11:39
40 Individual-signal 584 4875.8 14:58
40 Cooperative 39.5 0 14:34
45 Global-signal 65.6 5058.4 10:18
45 Individual-signal 59.3 3974.4 12:58
45 Cooperative 44 0 10:33
60 Global-signal 64.7 642.4 8:38
60 Individual-signal 62 84.6 8:55
60 Cooperative 57.5 0 8:29

VIIL Concluding Remarks

[0261] Having described and illustrated the principles of
the disclosed technology in the detailed description and
accompanying drawings, it will be recognized that the various
embodiments can be modified in arrangement and detail
without departing from such principles.

[0262] Inview of the many possible embodiments to which
the principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be
taken as limiting the scope of the invention. Rather, the scope
of the invention is defined by the following claims and their
equivalents. We therefore claim as our invention all that
comes within the scope and spirit of these claims and their
equivalents.

What is claimed is:

1. A method, comprising:

receiving data representing a software agent, the data
including data indicating a cryptographic signature for
the software agent, data indicating resource require-
ments for executing the software agent, and executable
code for performing an agent task;

determining that the executable code is authorized for
execution; and

executing the executable code on a processor, thereby per-
forming the agent task,

wherein the determining that the executable code is autho-
rized for execution comprises verifying that the software
agent is authorized using the data indicating the crypto-
graphic signature, and verifying that sufficient comput-
ing resources are available for the software agent using
the data indicating the resource requirements

2. The method of claim 1, wherein the data representing the

software agent further comprises data indicating an identity
of an initiator of the software agent, and

wherein the determining that the executable code is autho-

rized for execution further comprises verifying that the

Feb. 7, 2013

initiator is a recognized and authorized initiator using
the data indicating the identity of the initiator of the
software agent.

3. The method of claim 1, wherein the data representing the
software agent further comprises data indicating a crypto-
graphic signature for configuration data of the software agent,
the configuration data indicating parameters for the execut-
able code and destination nodes for the software agent, and

wherein the determining that the executable code is autho-

rized for execution further comprises verifying that the
configuration data of the software agent has not been
altered using the cryptographic signature for the con-
figuration data.

4. The method of claim 1, wherein the data representing the
software agent further comprises data indicating a crypto-
graphic signature for mutable data of the software agent, and

wherein the determining that the executable code is autho-

rized for execution further comprises verifying that the
mutable data of the software agent has not been altered
using the cryptographic signature for the mutable data.

5. The method of claim 1, wherein the method is performed
by computing hardware in communication with one of (a) a
sensor for measuring an electrical parameter of a power line
of a power grid, (b) a sensor for measuring an electrical
parameter of a distributed generator coupled to the power
grid, (¢) an electrical meter for a household coupled to the
power grid, (d) a control unit for one or more household
electrical devices that receive power from the power grid, or
(e) a control unit for controlling power distribution on the
power grid.

6. The method of claim 1, wherein the executing the
executable code comprises:

instantiating an instance of an agent execution environ-

ment; and

executing the executable code in the agent execution envi-

ronment.

7. The method of claim 1, wherein the agent task is to
update agent code for an existing agent.

8. The method of claim 1, further comprising:

receiving data from a sensor as a result of executing the

executable code on the processor;

storing the collected data in a mutable data container of the

software agent; and

transmitting the software agent, along with the collected

data, to a next destination in a manner in which the
mutable data container is protected from tampering dur-
ing transmission.

9. The method of claim 8, wherein the sensor is configured
to measure an electrical characteristic of a power line, a
distributed generator, or an electrical device.

10. One or more computer-readable media storing com-
puter-executable instructions, which when executed by a
computer cause the computer perform the method of claim 1.

11. A circuit comprising computing hardware configured
to perform the method of claim 1.

12. A system, comprising:

a sensor for measuring an electrical characteristic of a

power line, electrical generator, or electrical device;

a network interface;

a processor; and

one or more computer-readable storage media storing

computer-executable instructions, the computer-execut-
able instructions including,

US 2013/0036311 Al

instructions for implementing an authorization and
authentication module for validating a software agent
received at the network interface,
instructions for implementing one or more agent execu-
tion environments for executing agent code that is
included with the software agent and that causes data
from the sensor to be collected, and
instructions for implementing an agent packaging and
instantiation module for storing the collected datain a
data container of the software agent and for transmit-
ting the software agent, along with the stored data, to
a next destination.
13. The system of claim 12, wherein the sensor comprises
a phasor measurement sensor.
14. The system of claim 12, wherein the system is part of an
electrical meter for a household on a power grid, or a control
unit for one or more household electrical devices that receive
power from the power grid.
15. The system of claim 12, wherein the system is part of a
control unit in communication with a power grid.
16. The system of claim 12, wherein the one or more
computer-readable media further store data indicative of
cryptographically verifiable identities, the data indicative of
cryptographically verifiable identities being used by the
authorization and authentication module to validate the soft-
ware agent.
17. The system of claim 12, wherein the one or more
computer-readable media further store data indicative of a
network identity for the next destination, the network identity
being used by the agent packaging and instantiation module
to transmit the software agent to the next destination.
18. The system of claim 12, wherein the one or more
computer-readable media further store instructions for con-
trolling an information exchange bus that facilitates commu-
nication to the one or more agent execution environments.
19. The system of claim 12, wherein the instructions for
implementing the one or more agent execution environments
include instructions for executing an agent written in a first
language in a first execution environment and instructions for
executing an agent written in a second language in a second
execution environment different from the first execution envi-
ronment.
20. A computer-implemented method, comprising:
loading data defining an uninitiated software agent, the
data defining the uninitiated software agent comprising
executable code for performing an agent task;

identifying one or more destination nodes to which the
software agent is to be transmitted;

generating data defining an initiated software agent, the

data defining the initiated software agent comprising
immutable data that indicates identities of the one or
more destination nodes and indicates configuration
parameters for the agent task, data indicating an identity
of an initiator of the initiated software agent, data indi-
cating an cryptographic signature of the initiated soft-
ware agent, and the executable code for performing the
agent task; and

transmitting the data defining the initiated software agent

to one of the one or more of the destination nodes.

21. The method of claim 20, wherein the method is per-
formed by computing hardware associated with a feeder in a
power grid and wherein the one or more destination nodes are
nodes corresponding to homes powered by the feeder.

23

Feb. 7, 2013

22. The method of claim 20, wherein the data defining the
uninitiated software agent includes data indicating a crypto-
graphic signature of the uninitiated software agent signed by
a creator of the uninitiated software agent, and wherein the
method further comprises determining that the uninitiated
software agent is authorized based at least in part on the
cryptographic signature of the uninitiated software agent
signed by the creator.
23. The method of claim 20, wherein the data defining the
uninitiated software agent and the data defining the initiated
software agent include data indicating resource requirements
for executing the software agent.
24. The method of claim 20, wherein one or more of the
destination nodes are communicatively coupled to (a) a sen-
sor for measuring an electrical parameter of a power line of a
power grid, (b) a sensor for measuring an electrical parameter
of a distributed generator coupled to the power grid, (c) an
electrical meter for a household coupled to the power grid, (d)
a control unit for one or more household electrical devices
that receive power from the power grid, or (e) a control unit
for controlling power distribution on the power grid.
25. The method of claim 20, wherein the method is per-
formed by computing hardware associated with a first hier-
archical level of a power grid, and wherein the data defining
the uninitiated software agent is sent from computing hard-
ware associated with a second hierarchical level of the power
grid at a higher level than the first hierarchical level.
26. The method of claim 25, wherein the data defining the
uninitiated software agent includes data indicating a crypto-
graphic signature for the uninitiated software agent generated
by the computing hardware associated with the second hier-
archical level of the power grid, and wherein the method
further comprises determining that the uninitiated software
agent is authorized based at least in part on the cryptographic
signature for the uninitiated software agent generated by the
computing hardware associated with the second hierarchical
level of the power grid.
27. One or more computer-readable media storing com-
puter-executable instructions, which when executed by a
computer cause the computer to perform the method of claim
20.
28. A circuit comprising computing hardware configured
to perform the method of claim 20.
29. A computer-implemented method, comprising:
generating data defining an uninitiated software agent, the
data including executable code for performing an agent
task, data indicating an identity of a creator of the unini-
tiated software agent, and data indicating computing
resources required to perform the agent task; and

storing the uninitiated software agent on one or more com-
puter-readable storage media.

30. The method claim 29, wherein the data defining an
uninitiated software agent further includes data indicating an
cryptographic signature signed by the creator of the uniniti-
ated software agent.

31. The method claim 29, wherein the agent task is per-
formed at least in part by (a) a sensor for measuring an
electrical parameter of a power line of a power grid, (b) a
sensor for measuring an electrical parameter of a distributed
generator coupled to the power grid, (¢) an electrical meter for
a household coupled to the power grid, (d) a control unit for
one or more household electrical devices that receive power
from the power grid, or (e) a power distribution control device
coupled to the power grid.

US 2013/0036311 Al

32. One or more computer-readable media storing com-
puter-executable instructions, which when executed by a
computer cause the computer to perform the method of claim
29.

33. A method, comprising:

transmitting an outgoing software agent to one or more

nodes on a network, wherein at least one of the nodes is
communicatively coupled to (a) a sensor for measuring
an electrical parameter of a power line of a power grid,
(b) a sensor for measuring an electrical parameter of a
distributed generator coupled to the power grid, (c) an
electrical meter for a household coupled to the power
grid, (d) a control unit for one or more household elec-
trical devices that receive power from the power grid, or
(e) a control unit for controlling power distribution on
the power grid, and wherein the outgoing software agent
includes resource information indicating resources used
to execute the software agent and a cryptographic sig-
nature for the software agent; and

after the transmission of the outgoing software agent,

receiving an incoming software agent that includes data
collected from the one or more nodes on the network.

34. The method of claim 33, wherein the outgoing software
agent comprises executable code for collecting data indica-
tive of an operational state of one or more distributed genera-
tors coupled to the power grid, and wherein the incoming
software agent includes the data indicative of the operational
state of the one or more distributed generators.

35. The method of claim 33, wherein the outgoing software
agent comprises executable code for collecting data indica-
tive of an operational state of one or more power lines coupled
to the power grid, and wherein the incoming software agent
includes the data indicative of the operational state of the one
or more power lines.

36. The method of claim 33, wherein the outgoing software
agent comprises executable code for collecting data indicat-
ing one or more of an identity, location, or electrical charac-
teristics of electrical devices associated with each of the one
or more nodes, and wherein the incoming software agent
includes the data indicating one or more of the identity, loca-
tion, or electrical characteristics of the electrical devices asso-
ciated with each of the one or more nodes.

37. The method of claim 33, wherein the outgoing software
agent comprises executable code for collecting data indica-
tive of a fault location among the one or more nodes, and
wherein the incoming software agent includes the data
indicative of the fault location among the one or more nodes.

38. One or more computer-readable media storing com-
puter-executable instructions, which when executed by a
computer causes the computer to perform the method of
claim 33.

39. A circuit comprising computing hardware configured
to perform the method of claim 33.

Feb. 7, 2013

40. A method, comprising:

receiving information indicative of an energy use goal for
one or more distribution power lines in a power network
for a time period;

receiving information from one or more remote house-

holds coupled to respective ones of the distribution
power lines, the information from the one or more
remote households comprising information indicating
an energy demand priority level for each respective
remote household;

determining an energy demand priority level for a local

household; and

determining whether to activate one or more electrical

devices at the local household during the time period
based at least in part on the information indicative of the
energy use goal, the information indicating the energy
demand priority level for each respective remote house-
hold, and the energy demand priority level for the local
household.

41. The method of claim 40, wherein the determination of
whether to activate the one or more electrical devices at the
local household during the time period is made using a set of
rules that is common among the local household and the one
or more remote households.

42. The method of claim 41, wherein the set of rules allows
a household with a higher energy demand priority level to
draw additional power before a household with a lower
energy demand priority level.

43. The method of claim 40, wherein the determination of
whether to activate the one or more electrical devices at the
local household during the time period is made using a set of
rules that is defined in executable code sent to the local
household using a software agent.

44. The method of claim 40, wherein the information
received from the one or more remote households is stored as
data in a software agent that is sent by a respective one of the
one or more household to the local household via a network.

45. The method of claim 40, further comprising selectively
activating the one or more electrical devices at the local
household based on the determination of whether to activate
the one or more electrical devices at the local household
during the time period.

46. The method of claim 40, further comprising transmit-
ting information indicative of the energy demand priority
level for the local household to the one or more remote house-
holds using a software agent.

47. One or more computer-readable media storing com-
puter-executable instructions, which when executed by a
computer cause the computer to perform the method of claim
40.

48. A circuit comprising computing hardware configured
to perform the method of claim 40.

#* #* #* #* #*

