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ABSTRACT 
 
This paper reports on conceptual design and thermo-fluid characteristics of two-phase flow devices enabled by dual-
mode wicks. In dual-mode wicking structures, liquid and vapor flow paths are integrated on the same plane and 
segregated flow of the two-phases is achieved by having networks of pores of multiple length-scales.  When a 
mixture of a gas and a liquid flow through this media and the wick material wets the liquid, then the liquid will 
preferentially segregate to and flow through the mode with the smaller effective pore size.  The gas will flow 
through the paths with the larger effective pore size. These wicks, further, have advantages in phase change heat 
exchange where the liquid can fill the entire channel. The interwoven liquid and vapor paths facilitate phase 
segregation and suppress or delay dry out of heated surfaces. Experimental results are presented showing heat 
transfer coefficients exceeding 25,000 W/m2K. Other characteristics demonstrated include reduced pressure drop 
and pressure fluctuations, and lower superheat requirements when compared to empty channels. A theoretical basis 
for enhanced heat transfer is presented, and merits of employing the technology in energy conversion applications 
are discussed. 
 

1. INTRODUCTION 
 
Processing gases and liquids together in microchannels having at least one dimension less than 1 mm has unique 
advantages for heat and mass transfer. Many investigators have proposed an assortment of microchannel based 
technologies and have studied multiple applications in science and engineering (Stone and Kim, 2001) and Stone et 
al, 2004). Liquid-vapor phase change heat transfer is a critical process in many energy conversion systems, 
including vapor compression and absorption cycle cooling, and for power cycles. Two-phase flow and heat transfer 
in microchannels have also been studied by many investigators for applications in electronics cooling. A thorough 
review of all the literature is beyond the scope of this paper.  
 
One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate 
the liquid phase from the gas/vapor phase. Gas-liquid processing is accomplished by providing a gas flow path and 
inducing flow of the liquid phase through the wick under an induced pressure gradient. These microwick 
technologies enable a variety of unit operations including phase separation, partial condensation, absorption, 
desorption, and distillation as discussed in TeGrotenhuis and Stenkamp (2005). The objective here is to extend the 
application of microwick technologies to enable energy efficient evaporators in energy conversion systems. Wicking 
structures assisted evaporation and thermal transport is popularly employed in heat pipes and its variants, Faghri 
(1995). Two-phase flows in capillary structures have also been studied by some investigators in the past, Wang and 
Peterson (2010) and Kawashima et al (1999). In this paper, we investigate two-phase evaporative flows in micro-
scale capillary structures. We report evaporative heat transfer and fluid flow performance characteristics on dual-
mode (characterized by multiple length and time scales) wicking structures. We compare our results against a simple 
empty-channel of the same dimensions in order to assess the advantages of microwick evaporators.  
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2. DUAL-MODE WICKS 
 
Dual-mode wicks refer to a class of porous structures that have multiple, distinct effective pore sizes, such as the 
structure made from Dexmet expanded metal foils shown in left image of Figure 1.  The spaces between adjacent 
wires correspond to one pore length-scale while the larger diamond-shaped openings correspond to a second pore 
length-scale.  When one observes a capillary rise experiment, liquid imbibes into the smaller gaps between the wires 
more rapidly and to a higher level than into the larger openings.  The analogy is a bundle of capillary tubes of 
differing diameter.  The smallest tubes have the highest capillary driving force and will fill first.  When the end is 
dipped in a wetting fluid, the smallest tubes fill faster and to a higher level while the mode corresponding to the 
largest diameter tube fills slowest and is ‘volume filling’. 
 

 
Figure 1. Examples of dual-mode wicks, including a 2-layer Dexmet expanded metal foil wick (A and B) and a 
second constructed of photo chemically machined (PCM) layers (a) with a schematic showing flow paths (b).   
 
2.1 Capillary Rise Experiments 
For a wick with one effective pore size, the mass uptake curve can be fit using the equation  
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which is Darcy’s Law combined with a pressure balance between capillary pressure from the Young-Laplace 
equation and hydrostatic head, where q is the velocity, K is permeability, µ is fluid viscosity, L is the liquid height, σ 
is the liquid surface tension, θ is the contact angle between the liquid and the material, rp is the effective pore radius, 
ρ is the liquid density, and g is the gravitational constant.  Figure 2 illustrates the poor fit of Equation (1) to capillary 
rise data for a dual-mode wick.  However, if a second length-scale is admitted with different parameters for K, L(t), 
and rp, then the data can be more accurately fit, as shown by the second curve in Figure 2.  This provides 
quantitative evidence in addition to qualitative observations for the dual-mode behavior. 
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Figure 2. Mass uptake data (♦) for a capillary rise experiment with ethylene glycol in a 3-layer wick made of 4Al7-
050F Delker expanded metal screens.  Least squares curve fit (—) of the data to the single-mode capillary rise 
equation and to the dual-mode capillary rise equation (- -).   
  
2.2 Phase Change Heat Transfer 
The objective is to take advantage of the unique hydrodynamic properties of dual-mode wicks for gas-liquid 
processing. When a mixture of a gas and a liquid flow through this media and the liquid wets the wick material, 
liquid will preferentially segregate to the smaller pore sizes and gas will flow through the larger effective pores to 
minimize pressure drop. Whereas heat pipes typically contain a wick for liquid flow and a separate plenum for vapor 
flow, the ability for dual-mode wicks to accommodate separate liquid and vapor flow paths creates the opportunity 
for ‘volume filling’ wicks, as one example.  Additionally, segregating gas and liquid into separate flow paths 
suppresses pressure fluctuations and liquid carryover that typically occurs in two-phase flow.  
 
Furthermore, advantages are anticipated for phase change heat transfer, which is the primary subject of this paper.  
When a dual-mode wick is in thermal contact with a primary heat transfer surface, the wick provides secondary heat 
transfer area and improves heat distribution into the channel, as well as providing significantly higher surface area 
and nucleation sites to enhance boiling.  Dry out is delayed by the capillary flow which distributes liquid and by 
flow segregation which avoids vapor trapping.  Gas phase convective heat transfer is enhanced by the small 
hydraulic diameter and tortuosity of the vapor channels, while the total vapor phase flow area created by the large 
number of parallel vapor channels precludes excessive pressure drops. 
 

3. PHASE CHANGE EXPERIMENTS 
 
3.1 Test Device 
In order to explore the potential for enhancing phase change heat transfer, a well-define dual-mode wick geometry 
was created from the photo-chemically machined (PCM) layers shown in Figure 1(a), which were made from 0.102 
mm thick 316 stainless-steel shims.  The square openings are 0.5 mm on a side.  When two layers are stacked with 
the holes aligned, the gaps between the wires form capillary channels that are approximately 0.05 mm wide and are 
continuous from one edge of the wick to the other.  Continuous, tortuous vapor channels are created by offsetting 
adjacent layers as shown in Figure 1(b).  The liquid and vapor flow paths are illustrated in Figure 1(b). A test device 
was constructed by stacking 8 layers in an enclosure.  The total flow cross-section had dimensions of 0.8 mm by 3.8 
cm and the total flow length was 10.2 cm. 
 
3.2 Experimental Set-up and Analysis 
Figure 3 shows a schematic of the phase change experimental set-up used to acquire boiling heat transfer 
performance of the dual-mode test device as well as an empty channel with the same internal dimensions for 
comparison. The device is oriented horizontally with gravity acting in the 0.8 mm dimension and is submerged in a 
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HAAKE D8 heated bath containing propylene glycol that was maintained at a set point within  0.25C. Filtered, 
de-ionized water is metered to the device using a peristaltic pump and a McMillan Micro flow sensor. Upon passing 
through the test device, the flow exits to a weighed container. Terminal temperatures and pressure difference across 
the device are measured using calibrated Omega T-type thermocouples (standard error  1.0 C) and Sensotec 
differential pressure transducer, respectively.  

 
 

Figure 3. Schematic of phase change heat transfer experimental set-up. 

Total heat transfer rate was calculated by an enthalpy balance using the mass flow and inlet and outlet temperatures 
and pressures.  Exit vapor quality was determined from the liquid effluent flow rate, which was obtained from the 
weight accumulation in the container. 
 
The heat transfer analysis assumes the device wall-temperature is the same as the bath set-point and that the wall 
resistance is negligible, so the heat transfer resistance is dominated by the heat transfer coefficient within the test 
device channel. The liquid feed was sub-cooled and the effluent was superheated in many cases, so single-phase heat 
transfer coefficients were needed to determine the subcooled, two-phase, and superheat lengths within the device 
using the same techniques as Bertsch et al. (2008). The same experimental system was used to obtain single-phase 
heat transfer coefficients for both liquid and gas.  The single phase heat transfer coefficient for liquid water is given 
by the correlation 

67.0

A
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and for superheated steam is given by  
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A
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The experimental data had a R2 value of 99.4 % for the Reynolds number range of 27-300 encountered in testing.  
The sub-cool and superheat duties are calculated from the inlet and outlet conditions, respectively, which are 
subtracted from the total to obtain the two-phase duty.  The lengths of sub-cool and superheat sections are obtained 
from their duties, heat transfer coefficients, and log-mean temperature difference with the constant wall temperature.  
The remaining device length is used as the two-phase transfer length to obtain the primary two-phase heat transfer 
area.  Finally, the two-phase heat transfer coefficient is obtained from the equation 
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where qtp is the two-phase heat transfer flux, Tbath is the bath temperature, and Tsat is the water saturation 
temperature. 
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4. EXPERIMENTAL RESULTS 
 
4.1 Dual-Mode Results 
A series of experiments were performed at different mass flow rates and different bath temperatures at atmospheric 
pressure within the device, so saturation temperature was 100C.  Figure 4 shows plots of bath temperature versus 
fluid exit temperature for the dual-mode wick evaporator. At all three flow rates, onset of boiling occurs very close 
to 100C bath temperature.  In the two-phase region where the measured temperature alternates between saturation 
and superheat temperatures, only the saturation temperature is plotted in Figure 4. At the lowest flow rate at a mass 
flux of 15.7 kg/m2s, very little driving force is needed to fully vaporize the water, and the exit temperature tracks the 
bath temperature with only 15C driving force.  At the intermediate flow, the required driving force increases to 
about 40C, and at the highest flow rate, the water is not fully vaporized with 50C driving force.  The estimated 
capillary pumping capacity of the wick corresponds to a mass flux of 85 kg/m2s. 
 
The two-phase heat transfer coefficient and pressure drop are plotted in Figures 5 and 6 as a function of non-
dimensional groups for the same three water flow rates. Heat transfer coefficients as high as 25,000 W/m2.K were 
obtained with water, which is over 3 times higher than values typically obtained with brazed-plate heat exchangers 
using R-410a refrigerant (Han et al., 2003, Hsieh et al. 2002). 
 
A dimensional analysis is performed to try to elucidate the physical processes occurring in two-phase heat transfer 
within the dual-mode wick.  If capillarity is a controlling mechanism, as desired, then scaling with the liquid channel 
effective pore diameter, d, and surface tension, , should be valid.  As expected, gravity is not important when the 
device is oriented horizontally, which is confirmed by the Bond number (=gdh

2/), which is on the order of 10-5, 
where dh is the liquid channel hydraulic diameter and ρ is liquid density. Therefore, for Bo << 1, the Suratman 
number (=d/2) is the relevant group for scaling inertial forces in capillary flows, which is in the range of 2-4x105 
for water in the range of 20-100C. Jayawardane et al (1997) performed extensive investigations of capillary flow in 
the viscous dominated regime (Su=103-105). Whereas the boiling behavior observed in tubes involves transitions 
between bubbly flow, churn, slug, annular or film, and mist flow, the expectation is that flow behavior in dual-mode 
wick in the two-phase boiling region is capillary driven. The Jakob number (Ja= Cp(Tbath-Tsat)/hfg) is important for 
discerning the relative importance of sensible versus latent heat transfer.  Other relevant groups for heat and mass 
transfer are the Reynolds number (Re), Prandtl number (Pr), and Peclet number (Pe). 
 
The simplified physical model used for scaling is heat conduction through a liquid film of uniform thickness δ over 
the entire two-phase heat transfer area.  A heat and mass balance over the length of the two-phase region, Ltp, results 
in 

 bath sat
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   (5) 

where kl is liquid thermal conductivity, hfg is the heat of vaporization, ρl is liquid density, and Vl is liquid velocity at 
the start of the two-phase region which goes to zero over the two-phase length. If the two-phase heat transfer 
coefficient is dominated by heat conduction through the film, the Nusselt number can be estimated by  
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 (6) 

using Equation (5).  Using this scaling to plot two-phase heat transfer coefficients produces straight lines, as shown 
in Figure 5, that coincide at low Pe number and deviate at higher Pe.  This supports the starting assumption that two-
phase heat transfer is dominated by thin film conduction in the dual-mode wick.  Furthermore, if the film thickness 
is equal to the liquid channel effective pore diameter, then the data would fall on the theoretical line included in 
Figure 5.  The proximity of the line to the data and the consistent slope indicate the film thickness is on the same 
order.  The offset between the data and the line is likely due to neglected thermal resistances, in particular, resistance 
due to conduction from the outer wall through the wick to the thin films. 
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Figure 4. Fluid exit temperature versus bath temperature at three different water flow rates. 

 
Figure 5. Two-phase heat transfer coefficient as a function of modified Peclet number. 

4.1 Comparison to Empty Channel 
Figure 6 shows the comparison between empty channels and dual-mode wicks of the same total internal dimensions. 
The improvement with the dual-mode wick is seen in Figure 6 as the bath temperature rises above 110C.  With 
greater than 10C driving force, the dual-mode wick device fully vaporizes the water, while the empty channel 
continues to show outlet temperatures oscillating between saturated liquid and superheated vapor. Even at 20C 
temperature driving force, the empty channel shows 2-phase flow at the outlet.  The empty channel oriented 
horizontally did not produce a consistent superheated steam at any of the water flows and bath temperatures that 
were tried.  The illustrates that not only can dual-mode wicks improve the boiling heat transfer coefficient, but 100% 
quality vapor can be stably produced at lower superheat. 
 
Pressure drop measurements from the differential pressure transducer show larger pressure oscillations with the 
empty channel than with the dual-mode wick device, as shown in Figure 7.  The dual-mode wick device does show 
an increase in pressure drop of about 0.3 psi at 15.7 g/s.m2 mass flux. Similar behavior was observed at the higher 
flow rate of 5.2 g/min. Pressure oscillations in the empty channels are understood to be caused by slugging due to 
varying vaporization rates and periodic dry out.  The capillary flow paths for the liquid in combination with separate 
flow paths for the vapor creates more consistent flow dynamics, delays dry out effects, and provides much more 
stable pressure performance.  This is likely to be most important in closed-loop systems where pressure fluctuations 
can propagate and induce unstable feedback mechanisms.    
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Figure 6: Comparison of minimum fluid exit temperature versus bath temperature between dual-mode wick and 
empty channel evaporator at a mass flux of 15.7 g/s.m2, as well as time traces showing fluctuations. 

 

(b) 

Figure 7: Comparison of pressure drop between dual-mode wick and empty channel evaporator at a mass flux of 
15.7 g/s.m2 and 120C bath temperature. 
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5. CONCLUSIONS 
 
This paper described unique structures for processing gas-liquid mixtures and reported on thermo-fluid 
characteristics of a dual-mode wick device. A two-phase heat transfer coefficient exceeding 25,000 W/m2K was 
obtained with a dual-mode wick device. Scaling calculations were presented supporting a thin film heat transfer 
model with a film thickness comparable to the liquid channel effective pore diameter.  In comparison to an empty 
channel device, the dual-mode wick device enabled: 

 stable operation (without pressure and temperature oscillations) and generally self-regulating due to 
capillary action 

 enhanced heat transfer and hence reduced superheat requirement for evaporative heat exchanger 
applications, and 

 complete vaporization of liquid to vapor at lower superheat. 
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