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Highly exothermic and complex reaction paths

Main reaction:

(AH ~ -10 MJ/kg-product) »C,H;..(paraffin)
. . Chain +H,
CO(g)+2H,(g) > H,O+CH, I gown T

= C_H,, (olefin)

' Side reaction: r »Coke !
@ CO(g)+3H,(g) > H,0+CH,

CO(g)+H,O0(g) > H,+CO,

» Co-based catalysts for fixed beds

» Fe-based catalysts for slurry beds o
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« Current FT reactor commercialized for large-scale, integrated plants. Cost-
prohibitive when processing capacities are one or two orders of magnitude smaller
than refineries or petrochemical complexes.

» Most today’s needs of gas-to-liquid conversion are like distributed production at
small capacity scales, coal gasification, biomass gasification, remote natural
gases, solid wastes, other renewable energy sources.
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Planar heat exchanger-type

reactor configuration:

-- Hot zone is loaded with
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 Achieve nearly complete syngas conversion at one pass to dramatically
simplify process flow diagram, and thus, capital and operation costs

Limitations of conventional reactors (packed or slurry beds):

« CH, selectivity is too high at deep CO conversion

« Hydrodynamics, such as back mixing
« Catalyst deactivation
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Li & Kwauk “Exploring complex systems in chemical engineering — the multi-scale
methodology”. Chem. Eng. Sci. 58 (2003) 521-535, a powerful approach to all
catalytic reactor systems.

Address mass and heat transfer at
« Reactor scale

e  Scale of individual reaction unit
 Catalyst structure scale

Sl

7 Pacific Northwest
NATIONAL LASORATORY



Planar, heat-exchanger-type design:

» Take away reaction heat by adjacent cooling
streams

« Control temperature profiles by feed gas and
cooling fluid distribution, flow rates, and heat

exchanging area

» Ultilize existing reactor fabrication
technologies

» Scale up by numbering up reactor modules

Catalyst
structure insert
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Ceramic honeycomb as
catalyst support structures

 Structured catalyst bed comprises catalyst
coatings on a continuous inert support.

e Support matrix provides 3-D thermal
conduction network for rapid heat transfer
from catalyst surfaces to the heat
exchanging interface.
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Different types of two-phase flow in a channel; (s) dispersed bubble fiow; (b) bubble flow (c) ¢longated bubble flow; (d) Taylor
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Experimental testing of key design principles
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» Nearly complete H, or CO conversion at base WHSV at CH, selectivity <10
wt%. Stable temperature control
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« At a given WHSYV, CO conversion and CH, selectivity increase with
temperature, as expected
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« CO conversion decreases with increasing Vg (= increasing WHSV), as expected.

« CH, selectivity increases with Vg = higher CH, selectivity at lower CO conversion
—> opposite to results of conventional slurry or packed particle beds
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e 60-200mesh (~170um), H,/CO = 2, 25 bar, 210°C

» Very difficult to control temperature. CO conversion was unstable under const
conditions. Very high CH, selectivity

CO conversion or CH, selectivity, %
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» The structured bed shows CO conversion activity a few times higher than the
crushed particle bed.

» The structured bed enables <10% CH, selectivity at nearly complete one-pass CO
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» Structured bed consistently provides CO conversion a few times higher
than the particle bed under the same reaction conditions
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O For gas-to-liquid (FT) reaction, micro-structured catalyst bed designs lead
to some unexpected, exceptionally good performance attributes with a
common catalyst composition:

« >90% CO conversion at <10% CH, selectivity

« Afew times of higher activity than the same catalyst material in crushed patrticle
form

« Good temperature control in conventional sizes of reaction tubes (micro-channel
reactor is not necessary)

« Catalyst bed free of plugging by wax
A compact, high throughput gas-to-liquid catalytic reactor is possible

Note: poor performances obtained with conventional catalyst particle or slurry beds
may be due to the reactor design issues rather than due to catalyst material itself.
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