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(57) ABSTRACT 

A method of predicting whether a peptide present in a bio- 

logical sample will be detected by analysis with a mass spec- 

trometer. The method uses at least one mass spectrometer to 

perform repeated analysis of a sample containing peptides 

from proteins with known amino acids. The method then 

generates a data set ofpeptides identified as contained within 

the sample by the repeated analysis. The method then calcu- 

lates the probability that a specific peptide in the data set was 

detected in the repeated analysis. The method then creates a 

plurality of vectors, where each vector has a plurality of 

dimensions, and each dimension represents a property of one 

or more of the amino acids present in each peptide and adja- 

cent peptides in the data set. Using these vectors, the method 

then generates an algorithm from the plurality of vectors and 
the calculated probabilities that specific peptides in the data 

set were detected in the repeated analysis. The algorithm is 

thus capable of calculating the probability that a hypothetical 

peptide represented as a vector will be detected by a mass 

spectrometry based proteomic platform, given that the pep- 

tide is present in a sample introduced into a mass spectrom- 

eter. 
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1 
METHOD FOR PREDICTING PEPTIDE 

DETECTION IN MASS SPECTROMETRY 

The invention was made with Government support under 
Contract DE-AC0676RLO 1830, awarded by the U.S. 
Department of Energy. The Government has certain rights in 
the invention. 

TECHNICAL FIELD 

This invention relates to methods of utilizing mass spec- 

trometers for analyzing biological samples. More specifi- 

cally, the present invention is a method of predicting whether 

a peptide present in a biological sample will be detected by 

analysis with a mass spectrometer. 

BACKGROUND OF THE INVENTION 

A growing numbers of essentially complete genome 

sequences now available allows global identification of pro- 

teins responding to specific physiological conditions to 

enable understanding of cellular pathways and networks. A 

review of this research is published in the publications which 

follow (these and all other papers, references, patents, or 

other published materials cited or referenced herein are 

hereby incorporated herein in their entirety by this reference): 
Wilkins, M. R., Williams, K. L., Appel, R. D., Hoch- 

strasser, D. F. Eds., "Proteome Research: New Frontiers in 

Functional Genomics," Springer, Berlin, Germany, 1997. 

Devine, K. M., Wolfe, K. Trends Genet 1995, 11,429-431. 
Uddhav, K., Ketan, S., Mol. Bio. Rep. 1998, 25, 27-43. 

Genome Sequence of the Nematode C. elegans: A Platform 

for Investigating Biology, Science, 1998, 282, 2012-2018. 

Adams, M. D., 

Bioassays 1996, 18, 261-262. Anderson, L., Seilhammer, 

J., Electrophoresis 1997, 18, 533-537. 

Resources on the internet which provide access to these 

sequences include http://www.ebi.ac.uk!research!cgg/ge- 

nomes.html and http://www.ncbi.nlm.nih.gov/Entrez/Ge- 

nome/main_genomes.html 

Proteome analyses using either two dimensions (as shown 

in Washburn, M. R; Wolters, D.; Yates, J. R. Nat. Biotechnol. 

2001, 19, 242-247) or one dimension (as shown in Shen, Y.; 
Zhang, R.; Moore, R. J.; Kim, J. K.; Metz, T. O.; Hixson, K. 

K.; Zhao, R.; Livesay, E. A.; Udseth, H. R.; Smith, R. D. Anal. 

Chem. 2005, 77, 3090-3100) of liquid chromatography (LC) 
with tandem mass spectrometry (MS/MS) has become an 

important tool for protein identification due to its ability to 

rapidly identify complex mixtures of proteins with high sen- 

sitivity and limited bias. The dominant "bottom-up" approach 

described in these references allows for the identification of 

enzymatically produced (e.g., tryptic) peptides, and inference 

of the parent protein, due to the sequence related nature of 

peptide ion fragmentation, and the use of automated database 

searches (i.e., comparison of MS/MS spectra with theoretical 

spectra predicted from peptide sequence information as 

described in Eng, J. K.; McCormack, A. L.; Yates, J. R. Am. 

Soc. Mass Spectra, 1994, 5,976-989.) 

The challenges associated with accurate identification in 

"bottom-up" proteomics are significant due to the complexity 

of the peptide mixtures. For example, a genome coding for 

-5,000 proteins can potentially produce >250,000 tryptic 
peptides. 

At the same time, advances in instrumentation allow very 

large numbers of MS/MS spectra to be generated rapidly. 

While large amounts of data can easily be produced, the data 

suffers from variations in spectrum quality, protein abun- 

2 
dances, sequence specific differences in dissociation path- 

ways, the contributions of modified peptides, contaminates, 

and limitations on mass measurement accuracy. The reasons 

for these variations are described in the following publica- 

5 tions: 

Huang, Y.; Triscari, J. M.; Tseng, G. C.; Pasa-Tolic, L.; 

Lipton, M. S.; Smith, R. D.; Wysocki, V. H. Anal. Chem. 

2005, 77, 5800-5813. 
Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, 

10 S.P.J. Proteome Res. 2003, 2, 43-50. 

Keller, A.; Nesvizhskii, A. 1.; Kolker, E.; Aebersold, R. 
Anal. Chem. 2002, 74, 5383-5392. 

Strittmatter, E. F.; Kangas, L. J.; Petritis, K.; Mottaz, H. M.; 

Anderson, G.A.; Shen, Y.; Jacobs, J. M.; Camp, D. G.; Smith, 

15 R. D. J. Proteome Res. 2004, 3,760-769. 
The forgoing problems can result in significant levels of 

false positive identifications, in Peng, J.; Elias, J. E.; Thoreen, 

C. C.; Licklider, L. J.; Gygi, S. R J. Proteome Res. 2003, 2, 

43-50 and Shen, Y., Kim, J.; Strittmatter, E. F.; Jacobs, J. M.; 
2o Capm, D. G.; Fang, R.; Tolic, N.; Moore, R. J.; Smith, R. D. 

PROTEOMICS, 2005, 5, 4034-404, reverse-database and 

cross-database methods are purposed for evaluation of pep- 

tide false identification rates. However, these methods fail to 
generally define clear boundaries between true/false positive/ 

25 negative identifications, and the rates of false positive identi- 

fications increase approximately linearly with the number of 

possible peptides in the theoretical database for the system 

being studied (i.e. approximately with the size of the pro- 

teome). Furthermore, these methods deal with the peptides as 

3o population and do not provide any information for the indi- 

vidual peptides. As a result, increasing the database matching 

score criteria decreases the rate of identifying false positives, 

but simultaneously increases the probability of missed pep- 

tide identifications (i.e., a higher false negative rate). 

35 Recently, in Craig, R.; Cortens, J. R; Beavis, R. C., "The 

use ofproteotypic peptide libraries for protein identification" 

Rapid Communications in Mass Spectrometry 2005, 19, (13), 

1844-1850 and Kuster, B.; Schirle, M.; Mallick, R; Aeber- 
sold, R., "Scoring proteomes with proteotypic peptide 

4o probes" Nature Reviews Molecular Cell Biology 2005, 6, (7), 

577-583 the term proteotypic was coined for peptides in a 

protein sequence that is more likely to be confidently 

observed by a specific MS based proteomic method. Knowl- 

edge of the proteotypic peptides is very important in proteom- 

45 ics as it can increase the through-put and allow quantitative 

results to be obtained, it has even been suggested that accurate 

knowledge of the proteotypic peptides could lead on a para- 

digm shift of how proteomics is performed, lndeed, Beavis 

and co-workers showed that the knowledge of the proteotypic 

5o peptides can decrease the identification calculations by as 

much as 20-fold. Furthermore, Aebersold and co-workers 
indicated that once the proteotypic peptides of an organism 

are known, it is possible to synthesize heavy isotopes of these 

peptides, spike them in the sample of interest and achieve 

55 absolute quantitative data. in Le Bihan, T.; Robinson, M. D.; 

Stewart, 1.1.; Figeys, D., "Definition and characterization of a 

"trypsinosome" from specific peptide characteristics by 

Nano-HPLC-MS/MS and in silico analysis of complex pro- 

tein mixtures" J. Proteome Res. 2004, 3, 1138-1148, Le 
60 Bihan et al. showed that knowledge of the proteotypic pep- 

tides can help the identification of the low abundant proteins 

through inclusion lists that target the parent ions of these 

peptides. 

The assumption that every peptide has an equal likelihood 

65 of detection and identification by LC-MS is not supported by 

the experience of scientists engaged in proteomic research. 

lndeed, even in cases where only one pure standard protein is 
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digested by trypsin and analyzed by LC-MS, protein cover- 
age of 100% is rarely observed. Differences in which peptides 

are observed, and the failure to observe certain peptides in any 

particular experiment, are generally the result of the specifics 

of the proteomic platform used for a particular experiment. 

As used herein, a "proteomic platform" refers to the com- 

bination of the steps commonly performed to identify pep- 

tides in proteomic research; sample preparation, sample sim- 
plification, mass spectrometry, and the application of 

bioinformatic tools to the resulting data. As will be recog- 

nized by those having skill in the art, significant variations in 
the specifics of each of these steps exist, and these variations 

will have a significant impact on which peptides are observed. 
Differences in sample preparation, such as the protein 

extraction methodology and/or the denaturizing agents used 
for digestion, will lead to different peptides being observed. 

For example, while trypsin is perhaps the most commonly 

used enzyme in sample preparation, it is just one of the 
enzymes that may be used for the digestion of the proteins. 

Different chemical or enzymatic denaturizing agents will 
effect which peptides present in the sample are ultimately 

observed. Also, the nature of solid phase extraction used for 

cleanup purposes will also affect which peptides will be 

observed. 

Sample simplification refers to the very commonly used 

pre-fractionation and/or separation techniques often used for 

protein!peptide simplification before analysis by MS. For 

example, it is common to separate peptides by reversed phase 

liquid chromatography (RPLC) before analysis by mass spec- 

trometry. During this step, very hydrophilic peptides might 

not be retained on the column and will elute in the void 

volume while highly hydrophobic peptides can be bound 

irreversibly in the stationary phase. In both cases, these pep- 

tides will generally not be detected. Furthermore, it is also 

very common, especially in cases of very complex pro- 

teomes, to perform a peptide pre-fractionation by using 

strong cation exchange (SCX) before RPLC-MS. While this 

approach generally reveals more peptides overall, there are 

several classes ofpeptides that might bind irreversibly to the 
SCX and never make it to the RPLC-MS. These peptides 

could be otherwise detected by a simple RPLC-MS analysis if 

the pre-fractionation had not been used. 

With respect to mass spectrometry, the reasons peptides are 

not identified include the inability of certain peptides to ion- 
ize into the gas phase in sufficient quantities to give a detect- 

able signal and/or to give interpretable MS/MS spectra (in the 

case of MS/MS experiments). For example, it has been 

widely observed in proteomics that peptides from the same 

protein produce a range of detected intensities, with a fraction 

of the peptides from each protein falling below the detection 

limit. It should be understood that as the term is used herein, 
"mass spectrometry" includes all of the different ionization 

techniques used, included but not limited, ESI, MALDI, 

APCI, either alone or in combination, and the different frag- 

mentation techniques used, including but not limited to CID, 

ETD, ECD either alone or in combination. Differences in 

both the ionization techniques and the fragmentation tech- 

niques will lead to differences in the observed peptides. 

Finally, the same LC-MS/MS data analyzed by different 

parameters and by different informatics tools results in some- 

what different peptide identifications even when normalized 

to the same rate of false positives. This is because of the 
difference in scoring schemes used by different tools to inter- 

pret mass spectra. For example, MS/MS peptide identifica- 

tion software such as SEQUEST, Spectrum Mill, Mascot, and 
X-Tandem give peptide identification overlap of only about 

70% for the same LC-MS/MS analyses and same false posi- 

4 
tive rate. This means that for the same proteomic platforms 

(i.e. same biological sample, same sample preparation, same 

sample simplification technique, same ionization and same 

mass spectrometer analyzer) and only different data analysis 

5 software (i.e. as an example between SEQUEST and Mas- 

cot), there are going to be only about 700 identical peptides 

identified between the two software tools for every 1000 total 

peptides identified. 

These and other difficulties associated with identifying 

10 peptides in proteomic platforms has resulted in the develop- 

ment of various techniques which attempt to predict if a 
peptide will be accurately identified. For example, in Le 

13ihan, T.; Robinson, M. D.; Stewart, I. I.; Figeys, D., "Defi- 

nition and characterization ofa "trypsinosome" from specific 

15 peptide characteristics by Nano-HPLC-MS/MS and in silico 

analysis of complex protein mixtures" J. Proteome Res. 2004, 

3, 1138-1148 the authors describe a model that can predict if 

a peptide will be identified in a proteomic platform. This 

study used three peptide physiochemical properties: hydro- 

20 phobicity, isoelectric point (pI) and the length ofa peptide to 

generate the prediction. In Ethier, M.; Figeys, D., "Strategy to 

design improved proteomic experiments based on statistical 

analyses of the chemical properties of identified peptides" 

Journal of Proteome Research 2005, 4, (6), 2201-2206) the 

25 authors extended Le 13ihan’s algorithm by using different 
weights for the hydrophobicity, pI and length of the peptides. 

They further trained the weights with data from 13 different 

proteomic platforms and used clustering analysis to group the 

platforms into different groups. Finally, Kuster et al. (Kuster, 

30 13.; Schirle, M.; Mallick, R; Aebersold, R., "Scoring pro- 

teomes with proteotypic peptide probes" Nature Reviews 

Molecular Cell Biology 2005, 6, (7), 577-583) mentioned a 

computational approach for the identification of proteotypic 

peptides based on 500 different peptide physicochemical 

35 properties. 

Drawbacks and limitations associated with these and other 

methods create a need for improved methods and techniques 

for predicting whether peptides will be detected in mass spec- 

trometric analysis that simultaneously decrease the rate of 

40 false positive identifications and decrease the rate of false 

negative identifications. 

SUMMARY OF THE INVENTION 

45 Accordingly, one object of this invention is to provide a 
method for identifying peptides in mass spectrometry based 

proteomic platforms, that when combined with additional 

information, can simultaneously decrease the rates of both 

false positive identifications and false negative identifica- 

50 tions. Examples of additional information include, but are not 
limited to a) scores given by different software tools such as 

the Xcorr from the Sequest software, b) the difference 

between the theoretical and measured molecular weight of 

the peptide, c) the difference between the predicted and mea- 

55 sured retention time of the peptide. 
A second object of the present invention is to provide a 

method for predicting the probability that a peptide will be 

detected by a mass spectrometer, given that it is present in a 

sample. 

6o The present invention is thus a method for predicting the 

likelihood that a peptide from a protein sequence will be 

identified by a specific MS based proteomic platform assum- 

ing that the protein from which the peptide comes exists in 

sufficient concentration to be detected by the specific pro- 

65 teomic platform. Thus, yet another object of the present 

invention is to provide a method that will be useful in all 

proteomic platforms. 
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These and other objects are accomplished by the present 

invention; a method for predicting that a peptide will be 

detected in a mass spectrometry based proteomic platform. 

While the method of the present invention is described herein 

as a series of steps, the sequence of those steps should not be 

considered as a requirement of the present invention, nor 

should the claims appended hereto be interpreted in any way 

as being limited to any particular order of the steps claimed 
therein. Rather, the sequence of the steps in both this descrip- 

tion and the appended claims is merely intended to facilitate 

an understanding of the invention, and assist in enabling a 
skilled artisan to make and/or use the invention. Those having 

ordinary skill in the art will readily recognize that the steps 
described both in this description and in the appended claims 

may be performed in an order different than that which is 
presented, and that performing the steps in an alternative 

order will accomplish the same end result. Accordingly, the 

appended claims should in no way be interpreted as limited to 

the particular order of the steps of the present invention, and 

this description and the appended claims should be under- 

stood as contemplating the performance of the steps of the 

present invention in any order. 

The method of the present invention begins with the step of 

performing repeated analysis of a sample containing peptides 

from proteins with known amino acids. Those having ordi- 

nary skill in the art will recognize that proteins contain pep- 

tides, and peptides are in turn are made up of amino acids, and 

that the amino acids contained within a great many proteins 

have been extensively analyzed, and in many cases 

sequenced, by those having ordinary skill in the art. Accord- 

ingly, it should be understood that the term "known" peptides 

means simply that a portion of the proteins present in the 

sample have previously been identified, and thus the presence 

of those peptides in the sample is expected. 

The analysis of the sample is preferably performed using at 

least one mass spectrometer. More than one mass spectrom- 

eter may be used, however, the use of several mass spectrom- 

eters potentially introduces complications associated with 

differences between the different machines. If these compli- 

cations are present, it requires that the practitioner account for 

these complications when practicing the present invention. 

Accordingly, while the use of a single mass spectrometer will 

typically simplify the practice of the present invention, it is 

not necessarily required. 

Those having ordinary skill in the art will recognize that 

there exist many different types and configurations of mass 

spectrometers, and it is unnecessary to recite all of these 
different types and configurations of mass spectrometers to 

enable a skilled artisan to appreciate their existence. It should 

therefore be understood that the present invention is capable 

of being practiced with these different types and configura- 

tions of mass spectrometers, and the present invention should 

in no way be limited to any such type or configuration. 
The present invention includes the further step of generat- 

ing a data set of peptides identified as contained within the 

sample by the repeated analysis. Peptides included within this 

data set are limited to the peptides that were identified in at 

least a portion of the analysis. 

The present invention has the further step of calculating the 

probability that a specific peptide in the data set was detected 

in the repeated analysis. As used herein, the "probability" that 

a specific peptide in the data set was detected in the repeated 

analysis is the ratio of the number of times that the peptide 

was detected to the number of times the protein that contains 

the peptide was detected. 

The present invention has the further step of creating a 

plurality of vectors, each vector having a plurality of dimen- 

6 
sions, each dimension representing a property of one or more 

of the amino acids present in each peptide in the data set. Each 

vector is further associated with the probability that the pep- 

tide it describes was detected. The number of dimensions 

5 used can vary depending on the specific properties that a user 

wishes to incorporate in the model. 

As used herein, the term "vector" means an ordered col- 
lection ofn dimensions; such that a vector having n attributes 

is an ordered collection of n dimensions. For example, a 

10 vector constructed to represent a peptide potentially having 

20 amino acids could have twenty dimensions, each dimen- 

sion representing the presence of each of the possible proteo- 

genic amino acids. In this example, the "property" of the 

amino acid is simply whether it is present or not. However, the 

15 "property" of the amino acid should not be limited to the mere 

presence of the amino acid. "Properties" of amino acids as 

used herein should be understood to refer to any chemical 

information, which is both unique and detectable within the 

particular amino acids, either alone or in combination with 

2o the other amino acids in the peptide. Thus, when referring to 
the "properties", it can be property of an amino acid and/or a 

property ofa peptide and/or a property of a protein. Thus, by 

way of example and not of limitation, "properties" would 

include both the position and identity of an amino acid or a 

25 portion of the amino acids in the peptide. As a further example 

"properties" would also include, but not be limited to, hydxo- 

phobicity, volume area, pKa, solubility, isoelectric point (pI), 

Chou-Fasman parameters, hydrogen bonding, protein affin- 

ity, gas phase basicity As yet a further example, "properties" 

3o would include whether the amino acids contained a phenyl 

group, or whether the amino acid is aromatic. Regardless of 

the specific properties selected, the step of creating a plurality 

of vectors proceeds by assigning each vector a plurality of 

dimensions, where each dimension represents a property of 
35 one or more of the amino acids present in each peptide in the 

data set. In this manner, a set of vectors is generated which 

represent a portion of the amino acids present in the data set. 

The present invention has the further step of generating an 

algorithm that is capable of calculating the probability that a 

4o given peptide, also represented as a vector, will be detected by 

a mass spectrometer given that it is present in a sample intro- 

duced into the mass spectrometer. The algorithm is generated 

from both the plurality of vectors and the calculated prob- 

abilities that specific peptides in the data set were detected in 

45 the repeated analysis. In this manner, the algorithm is able to 

take as a vector any peptide that might be present in a sample, 

(hereafter a "hypothetical peptide), and to use that vector to 

calculate the probability that the hypothetical peptide will be 

detected by analysis with a mass spectrometer, assuming it is 

5o present in the sample. 

Preferably, and not meant to be limiting, the algorithm is 

generated as a data driven model, also known by those having 

ordinary skill in the art as an empirical model. As the term is 

used herein, a "data driven model" is any mathematical tech- 

55 nique characterized by the use of known data to generate a 

function that may be applied to similar data to make predic- 

tions. In the present invention, the "known data" is the data 

from the repeated analysis and the calculated probabilities, 

the "similar data" is the hypothetical peptide expressed as a 

6o vector, and the "prediction" is the probability that the hypo- 

thetical peptide will be detected by analysis with a mass 

spectrometer, assuming it is present in the sample. As will be 

recognized by those having ordinary skill in the art having the 

benefit of this disclosure, data driven models suitable for use 
65 in the present invention include, but are not limited to, mul- 

tivariate regression, neural networks, support vector 

machines, and combinations thereof. Accordingly, the 
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present invention preferably utilizes a data driven model to 

construct an algorithm from the known data from the repeated 

analysis and the calculated probabilities. The algorithm thus 

constructed can then analyze any hypothetical peptide to 

accurately predict whether that peptide will be detected by a 5 

mass spectrometry based proteomic platform, assuming that 

it is present in a sample introduced into the mass spectrom- 

eter. 

The present invention can be used across the entire spec- 

trum of proteomic platforms. Once the present invention is 10 

trained with peptide identifications from a specific proteomic 

platform, it can accurately predict peptides from a protein 

sequence that are likely to be identified from the same or very 

similar proteomic platform, in contrast, if the details of the 

proteomic platform used in conjunction with the present 15 

invention, including but not limited to sample preparations, 

sample simplifications, the mass spectrometers and the con- 

figuration of the mass spectrometers, and the bioinformatic 

tools are changed, all that is necessary to practice the present 

invention is to retrain the present invention using data from 

the proteomic platform as changed. 

The steps of the present invention are preferably performed 

in an automated fashion, and more preferably are performed 

by a general purpose computer configured to perform the 
steps. Accordingly, the present invention includes the steps of 

the present invention recorded in digital form on any media 

capable of storing an instruction set. By providing that 

instruction set to a general purpose computer, the general 
purpose computer is then configured to perform the instruc- 

tions, and practice the steps of the present invention. As will 3o 

be recognized by those having skill in the art, the function of 

any computer programmed by software to perform any series 

of steps, including the steps of the present invention, can be 

also be accomplished by configuring computer hardware to 

perform the identical steps. Further, a computer capable of 

multiple configurations can be designated as a single purpose 

computer, dedicated to performing only one task, simply by 

providing the computer only one software application. 
Accordingly, the present invention should also be understood 

to include any computer system, whether multipurpose or 

single purpose, that has been configured to perform the steps 

described herein, whether as a series of steps provided to the 

computer as software, or by configuring the computer’s hard- 

ware to perform the series of steps described and claimed 

herein.                                                45 

BRIEF DESCRIPTION OF THE DRAWINGS 

The following detailed description of the embodiments of 

the invention will be more readily understood when taken in 

conjunction with the following drawing, wherein: 

FIG. 1 is a schematic of the data path (from left to right) of 

a three-layer back propagation neural network used in the 

experiments which demonstrated a preferred embodiment of 
the present invention. 

FIG. 2 are scatter plot diagrams showing the observed vs. 

predicted peptide probabilities of being proteotypic as found 

in experiments which demonstrated a preferred embodiment 

of the present invention. FIG. 2(A) shows the results for a 

partially encoded peptide sequence model with 279 input 

nodes, 5 hidden nodes and 1 output node; FIG. 2(B) shows the 

results for a fully encoded peptide sequence model with 1182 

input nodes, 5 hidden nodes and 1 output node; and FIG. 2(C) 

shows the results for a peptide sequence model with configu- 

ration of 1182 input nodes, 18 hidden nodes and 1 output 

node. 

8 
FIG. 3 is a cumulative density function graph showing the 

accuracy of preferred embodiment of the present invention 

for prediction ofproteotypic peptides as demonstrated by the 

experiments described herein. As shown in the graph, the 

likelihood differences between the predicted and observed 

probabilities were <_+20% for -95% of the tested peptides, 

<_+10% for -85% of the tested peptides, and <_+5% for-75% 

of the tested peptides. 

FIG. 4 are graphs showing the capability of preferred 

embodiment of the present invention for distinguishing true/ 

false peptide identifications. FIG. 4(A) is the ROC curve and 

FIG. 4(B) is the proteotypic peptide true/false rates at various 

detection probabilities predicted from the ANN model 

obtained in this study. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

For the purposes of promoting an understanding of the 
2o principles of the invention, a series of experiments were con- 

ducted wherein one embodiment of the invention was dem- 
onstrated and reduced to practice. 

Peptide identifications from a number of different bacterial 
organisms and from an array of studies were used to train and 

25 test the artificial neural network (ANN). Table 1 lists the 
bacteria and cites published studies providing the detailed 
sample preparation for each organism. 

TABLE 1 

Organisms from which the peptides were identified, 
number of LC-MS/MS analyses for each organism, number of 
total spectra, redundant peptides identified from each organism 

before any filtering and the number of filtered distinct peptides. 

35 # of LC- Total Unfiltered Filtered 
Organism MS/MS spectra peptides peptides 

D. radiodurans35 1,031 491,437 56,708 21,616 

G. mettallireficens 107 400,292 54,595 21,277 

G. sulfurreducens 791 909,730 85,358 26,446 

R. sphaeroides 1,047 432,450 57,920 22,495 
40 

S. tyhpimurium 492 1,692,917 116,063 32,920 

S. oneidensis36 2,315 3,040,760 117,757 33,071 

Y. pestis 719 221,196 22,322 9,898 

Total 6,502 7,188,782 510,723 167,723 

in general, bacterial cells were cultured in tryptone, glu- 

cose, and yeast extract (TGY) medium to an approximate 

optical density of 600 nm and harvested by centrifugation at 
10,000xg at 4° C. Prior to lysis, cells were resuspended and 

5o washed 3 times with 100 mM ammonium bicarbonate and 5 

mM EDTA (pH 8.4). Cells were lysed by beating with 0.1- 
mm acid zirconium beads for three, 1-min cycles at 5000 rpm 

and incubated on ice for 5 min between each cycle. The 

supernatant containing soluble cytosolic proteins was recov- 

55 ered following centrifugation at 15,000xg for 15 min to 
remove cell debris. Proteins were denatured and reduced in 

50 mM Tris buffer (pH 8.2), 8 M urea, 10 mM tributyl phos- 

phine for 1 h at 37° C. The protein sample was diluted 10 

times using 20 mM Tris buffer (pH 8.2) and then digested 

6o overnight at 37° C. using sequencing grade, modified porcine 
trypsin (Promega, Madison, Wis.) at a trypsin:protein ratio of 

1:50. The digests were purified using SPE C18 columns (Su- 

pelco, Bellefonte, Pa.) according to the manufacturer’s 

instructions and dried under vacuum. Capillary LC systems 

65 as described in Shen, Y.; Zhao, R.; Belov, M. E.; Conrads, T. 
R; Anderson, G. A.; Tang, K.; Pasa-Tolic, L.; Veenstra, T. D.; 

Lipton, M. S.; Smith, R. D., "Packed Capillary Reversed- 
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Phase Liquid Chromatography with High-Performance Elec- 
trospray ionization Fourier Transform lon Cyclotron Reso- 

nance Mass Spectrometry for Proteomics"Anal. Chem. 2001, 

73, 1766-1775. were used for high efficiency reversed phase 

peptide separations. 

Briefly, fused silica capillaries (60 to 80 cmx75 to 150 �tm 

i.d., Polymicro Technologies, Phoenix, Azir.) were packed 

with 3-�tm or 5-�tm Jupiter C18 particles (300-A pore size, 

Phenomenex, Torrance, Calif.). The sample was directly 

loaded to the column head using a 6-port switching valve 

(Valco instruments, Houston, Tex.). The LC column outlet 
was connected to a zero dead-volume union (Valco) using 

PEEK tubing (380 grn i.d., Upchurch Scientific, Oak Harbor, 

Wash.) to position a steel screen having 2 �tm pores (Valco). 

The union’s other end was connected to a 3-cm length of 

fused silica capillary tubing (50 �tm i.d.x200 �tm o.d., Polymi- 

cro Technologies) tapered to form an ES1 emitter. The LC 

gradient separation was conducted in constant pressure mode 

(5,000 to 10,000 psi) by replacing mobile phase A [H2 0/ 

acetic acid/trifluoroacetic acid (TFA), 100:0.2:0.05, v/v, Ald- 
rich, Milwaukee, Wis.] with mobile phase B (acetonitrile/ 

H20/TFA, 90:10:0.1, v/v) in a stainless steel static mixer (2.5 
mL). Two 1SCO pumps (Model 100 DM, 1SCO) were used for 

delivery of the mobile phases. 

Conventional 3-D ion trap mass spectrometers (Finnigan 

model LCQ XP, ThermoQuest Corp., San Jose, Calif.) were 

used for the ES1-MS/MS measurements. The distance 
between the ES1 emitter tip and the MS inlet capillary was -1 

mm, and the heated capillary temperature and ES1 voltage 

(applied on the column outlet connection union) were set at 

200° C. and 2 kV, respectively. The three most abundant ions 

from MS analysis were selected at the m!z range of 400-2000. 

A collision energy setting of either 35% or 45% was applied 

for ion fragmentation and a data-dependent analysis mode 

was applied to discriminate against previously analyzed ions. 

The software SEQUEST (ThermoQuest Corp.) was used 

for identification of peptides from the LC-MS/MS analyses. 

The mass tolerance of_+3 Da was used for database searching 

without considerations ofpeptide modifications. A ACn value 

of>0.1 was used to filter the spectra, and threshold values for 

XCorr were as follows: XCorr>1.6 for +1 charged fully tryp- 

tic (mass<1000 Da), XCorr>2.2 for +1 charged fully tryptic 

(mass>1000 Da), and XCorr>2.8 for +1 charged partially 

tryptic (mass>1000 Da) peptides; XCorr>2.2 for +2 charged 

fully tryptic, XCorr>3 for +2 charged partially tryptic pep- 

tides; XCorr>2.9 for +3 charged fully tryptic, XCorr>3.7 for 

+3 charged partially tryptic peptides. Only peptides having 5 

to 50 amino acid residues were considered. 

As described in Werbos, R J., The Roots of Bacl�ropaga- 

tion. John Wiley & Sons: New York, 1994, Werbos, R J. New 

tools for predictive and analysis in the behavioral sciences 

(Ph.D. Thesis, Harvard University). Ph.D., Harvard Univer- 

sity, Cambridge, Mass., 1974, and Baczek, T.; Wiczling, R; 

Marszall, M.; Heyden, Y. V.; Kaliszan, R., Prediction of pep- 

tide retention at different HPLC conditions from multiple 

linear regression models. J. Proteome Res. 2005, 4, 555-563, 

an artificial neural network (ANN) is an information process- 

ing paradigm that learns by example rather than by following 

instructions, it is composed of a set of highly interconnected 

neurons or nodes and these neurons work in parallel to solve 

a complex problem. The experiments described herein used a 

back-propagation neural network (BPN), a supervised feed- 
forward network, lts architecture consisted of one input layer, 

zero or more hidden layers, and one output layer, as shown in 

F1G. 1. Each layer contains nodes, and the nodes in each layer 

are fully or partially connected to the nearest layers above or 

below. The nodes in the input layer receive the input vectors 

10 
and distribute the input data values to the next hidden layer 

through weighted connections; the nodes in the output layer 

produce the desired resultant output. Nodes in the hidden 

layer performed two calculations including summing the 
products of connection weights and the signals from the pre- 

vious layer using equation (1) and calculating their output 

using a sigmoid function (2). 

Netj �"� l W ijOi (1) 

10 Oj 1/(1+e Ned) (2) 

where the Netj represents the net input signal to thej node, 

i represents the nodes in the previous layer, w� is the weight 
value associated with the connection from node i to node j, 

15 value n represents the number of nodes in the previous layer 

connected to the node j, and Oi is the output signal from the 

node i. The node in the output layer also applied these two 

calculations to produce its output. 

The output-layer error was calculated by subtracting the 

2o actual output from the target output during the training of the 
network; the network passed the output-layer error to the 

hidden layer, while the nodes in the hidden layer adjusted the 

weights to reduce their errors. The process of changing 

weight values so that the actual output become closer to the 

25 target output was performed iteratively many times using the 
training data in the training phase. This backpropagation of 

error algorithm is only one of many that can be used. 

This work usedANN software NeuroWindows Version 4.5 

(Ward Systems Group, USA), with a standard back propaga- 

3o tion algorithm running on a Pentium 3.0 GHz personal com- 
puter. The network model was trained with a learning rate and 

momentum term of 0.1 and 0.9 respectively. The models were 

tested at training epoch numbers from 10 to 100 and the best 

performance was obtained at about 70 epochs after which the 

35 performance deteriorated. 
There are several ways for peptides to be incorporated 

(encoded) in a statistical prediction algorithm. One of the 

simplest ways is to encode the amino acid composition of the 

peptides, tracking how many times each amino acid residue is 

4o found in each peptide. One of the most computationally com- 
plex ways is by fully describing the peptide sequence, i.e. 

identifying what amino acid is occupying which position in 

each peptide, in general, the larger the training set the more 

complex the encoding can be without over-fitting the data. 

45 in this study, two peptide encoding schemes were exam- 
ined for input to the neural network: fully and partially 

encoded peptide sequences. The fully encoded peptide 

sequence model described the exact amino acid residue in 

each position of the peptide sequence (up to 50 residues). The 

50 partially encoded peptide sequence model described the exact 
amino acid residues for the 3 amino acids at the N-terminus 

and the 3 amino acids at the C-terminus of the peptide. The 

remaining amino acid residues are represented by a single 

vector. 

55 Thus, in the fully encoded peptide sequence model used in 
these experiments, each vector was composed of 21 dimen- 

sions and each dimension represented an individual amino 

acid residue. All the vectors representing the exact position of 

an amino acid residue in the peptide contain 20 zero values 

6o and one numerical value representing the amino acid residue. 
in contrast, the vector in the partially encoded peptide 

sequence model that is used to describe the amino acid com- 

position of the remainder of the peptide sequence often has 

more than one non-zero value. 

65 Eight parameters related to peptide structure/sequence 
were also investigated. These parameters were the 3 amino 

acid residues proceeding and following the modeled peptide, 
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the hydrophobicity values of proceeding and following 

neighboring amino acid sequences, the peptide cleavage at 

each end, and the peptide LC normalized elution time (NET) 

value. 279 input nodes were necessary to describe the par- 
tially encoded peptide sequence network model while 1182 

input nodes were used to describe the fully encoded peptide 

sequence network model. All input vectors were normalized 

to a range of 0-1 using the following normalization function: 

x- iTtin 
X�r -- 

max- min 

where max and min are the maximum and minimum val- 
ues, respectively, for each input variable. 

For the fully encoded peptide sequence model, the position 

of each amino acid residue is preferably identified. Since 

peptides with up to 50 amino acid residues were considered in 

these experiments, 1050 input nodes were used to represent 

each of the peptides (50x21). For the partially encoded pep- 

tide sequence the 3 N-terminal amino acids are represented 

by 63 input nodes (3x21). Another 63 nodes were used to 

describe the 3 C-terminus amino acid residues. Finally, 

another 21 nodes were used to represent the amino acid com- 

position for the remaining residues in the peptide. 

Several aspects of the encoding were common for both 

models. The three amino acids preceding the peptide of inter- 

est were represented by 63 nodes (3x21). The three amino 

acids following the peptide of interest were represented by 

another 63 nodes. The hydrophobicity value (calculated by 

averaging the hydrophobicity of all the different amino acid 

residues to one value) of the preceding neighboring amino 

acid residue sequence was represented by 1 input. Another 

input was used for the hydrophobicity value of the following 
neighboring amino acid residues. Two input nodes were used 

for the likelihood of the peptide cleavage at the beginning and 
the end of the peptide of interest. The product of cleavage 

probabilities at both ends was described by one input node 

defined by the following equation, 

Cleavage likelihood at amino acid position = I�l 

where x1 is the number of times that the amino acid previ- 

ous to the first amino acid of the examined peptide was 

detected; x2 is the number of times that the first amino acid 

(C-terminus) of the examined peptide examined amino acid 

was detected and y is the total number of different LC-MS/ 

MS experiments the corresponding protein (i.e. the protein 

which the peptide came from) was identified. 

Finally the liquid chromatography (LC) normalized elu- 

tion time (NET) value of the peptide of interest was repre- 

sented by one node. 

For each peptide in the training set, a value was assigned 

that described if that peptide was or was not identified. This 

number was calculated using the following equation, which is 

defined as the observed likelihood of a peptide being proteo- 

typic: 

x 
Peptide observed likelihood of being proteotypic = - 

Y 

12 
where x is the number of different LC-MS/MS experiments 

in which a peptide was identified and y is the total number of 

LC-MS/MS experiments in which the corresponding protein 

(i.e. the protein which the peptide came from) was identified. 
5 lfthe peptide was identified several times in the same LC-MS/ 

MS experiment (e.g., due to selection of different charge 

states or broad chromatographic peaks) it was only counted 

once in that experiment. This equation illustrates that a pep- 

tide can have an observed likelihood of being proteotypic 
10 with a range from 0 to 1, where 0 indicates that the peptide 

was never identified while 1 indicates that the peptide was 

identified the same number of times as its respective protein 

(i.e. x�j). 

in this study data from 7 different microorganisms were 
15 

used to train and test the model. As these are "real-world" 

proteomic data, the exact amount of each protein was not 

known, making it impossible to normalize the number of 

peptides identified from each protein to the respective protein 

concentration, in other words, if only a few peptides where 
20 

identified from a protein, it is not known if this is because the 

protein was present in low abundance or if most of its peptides 

are not proteotypic. To avoid this problem we chose to utilize 

only peptides from highly abundant proteins, thus assuring 

25 
that when peptides are not detected, it is because they are not 

proteotypic. Thus, only peptides coming from proteins that 

had been identified by _-->7 unique peptides in the same or 

different LC-MS/MS analyses were considered for the train- 

ing/testing of the model. Among the 167,723 peptides that 

30 
passed the SEQUEST score thresholds shown in Table 1 only 

71,079 came from proteins identified _-->7 times. For each 

peptide identified from a protein, another peptide that had not 

been identified was selected from the same protein. Although 

the unidentified peptide was randomly selected, it was 

35 
required to have the same tryptic state and zero sequence 

overlap with the observed peptide. The addition of unob- 

served peptides allows the training of the model to provide 

better predictive capability and resistance to interference. 

Lastly, 98% (139,986) of the peptides passing the score 

thresholds were randomly selected as the training dataset 
40 

while 2% (2,172) of the peptides were randomly selected as 

the testing dataset. Although the peptides were randomly 

selected, the ratio of observed to unobserved peptides was 

maintained at 1 : 1 in both the training and testing dataset. 

45 While the experiments described herein did not take into 
account protein size or protein concentration, the present 

invention should be considered as having contemplated these 

parameters, as these are known to be important factors in 

determining how many peptides are going to be identified 

5o from a specific protein. For examples for two proteins of the 
same concentration but different size (i.e. MW or length), it is 

more likely that a mass spectrometer will detect more pep- 

tides from the larger protein. Furthermore, more peptides are 

going to be identified from a protein if it exists in higher 

55 concentration in the sample. The present invention would 
model both these parameters simply by encoding, for 

example, the number of in silico peptides of each protein, in 

this example it would be preferred to count only peptides with 

a MW>400 as this is the practical low mass to charge ratio the 

6o mass spectrometers are tuned to search for peptides. 

Protein size could also be taken in to account in the selec- 

tion of peptides that are included in the training set. in the 

experiments described herein, peptides were selected that 

came from proteins that had been identified by at least 7 

65 unique peptides in the same or different LC-MS/MS experi- 

ments. By way of example, and not limitation, this number 

could be increased for larger proteins and decreased for 
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smaller proteins. Furthermore, the absolute or relative con- 

centration of a protein could also be taken into account in the 

present invention. 

One possibility would be by performing an absolute or 

relative quantitation of the proteins of the samples that are to 

be used for the training of the model. Another possibility 

would be by introducing the ratio of the number of times the 

protein has been identified to the number of the LC-MS/MS 

analyses. High abundant proteins will have higher ratios than 

lower abundant proteins. This way is probably preferred, as it 

does not require any previous quantitation of the sample and 

could even performed with the current data. Another possi- 

bility would be encoding a ratio that would take into account 

both size and concentration of the protein. For example, and 

not meant to be limiting, the ratio X/YxZ could be encoded 

where X number of different experiments a protein has been 

identified, Y�total number of LC-MS/MS experiments that 

the specific protein can be present, and Z is the size of the 

protein. The size of the protein can be expressed in different 

ways. For example, but not meant to be limiting, the size of 

the protein can be expressed as a) MW of the protein, b) 

number of amino acid residues, c) number of in silico pep- 

tides with a MW>400. The number of the in silico peptides 

will change as a function of the protein digestion method and 

the number of missed cleavages that will need to be consid- 25 

ered. Expressing the size of the protein as a number of in silico 

peptides is preferred, as it takes into account the way the 

protein has been digested while the other methods are con- 

stant and as a result non-sensitive to the digestion method. 

This ratio thus provides a relative idea of the concentration of 3o 

the protein at the same time that it normalizes for the size of 

the protein. 

Several peptide related parameters were considered as 

inputs to the artificial neural network. The first parameter 

considered was the predicted retention time of the peptide, 35 

which is partially dependent on peptide hydrophobicity. Le 

Bihan et al. (discussed above) explained that it is better to use 

the predicted retention time rather than calculated hydropho- 

bicities derived from published hydrophobic scales as each 

different application require a unique/specific scale, in addi- 4o 

tion, the retention time predictor works as a quick filter by 

excluding extremely hydrophilic peptides (i.e. predicted nor- 

malized elution time <0) and extremely hydrophobic peptides 

(i.e. predicted normalized elution time >1) from being 

selected as proteotypic. Furthermore, as described in Petritis, 

K.; Kangas, L. J.; Ferguson, R L.; Anderson, G. A.; Pasa- 

Tolic, L.; Lipton, M. S.; Auberry, K. J.; Strittmatter, E. F.; 

Shen, Y.; Zhao, R.; Smith, R. D., Use of artificial neural 
networks for the accurate prediction of peptide liquid chro- 

matography elution times in proteome analyses. Anal Chem 

2003, 75, (5), 1039-48 and Petritis, K.; Kangas, L. J.;Yan, B.; 

Strittmatter, E. F.; Monroe, M.; Qian, W.-J.; Adkins, J. N.; 
Moore, R. J.; Xu, Y.; Lipton, M. S.; 11, D. G. C.; Smith, R. D., 

lmproved peptide elution time prediction for reversed-phase 

liquid chromatography-MS by incorporating peptide 55 
sequence information. Anal Chem 2006, submitted, the mod- 

els available for use in retention time prediction are far more 

accurate than previously published models and are therefore 

superior to calculated hydrophobicities. 

The second parameter considered was the composition and 6o 

order of the peptide amino acid sequence. By incorporating 

the peptide sequence, the model can differentiate between 

fully and partially tryptic peptides. This is important infor- 

mation for the model as fully tryptic peptides have inherently 

higher likelihood to be detected as the proteins are digested 65 

with trypsin. Furthermore, valuable information such as 

neighboring amino acids residues that can accept a proton in 

14 
the gas phase is also available to the model. Two different 

models were evaluated: one that encoded the full peptide 

sequence and another that only encoded the 3 N-terminal 

amino acids and the 3 C-terminal amino acids while tracking 
5 the overall amino acid composition of the remainder of the 

peptide. This is a much more simplistic model (i.e. 279 vs. 

1182 nodes) and should work better when there is a limited 
amount of training data available. FIGS. 2A and 2B compare 

the two models. For the same amount of hidden nodes (i.e. 5) 
10 the fully encoded peptide sequence model outperforms the 

partially encoded one. lndeed, the fully encoded model 

achieves a mean square error (MSE) and R-square of 0.069 

and 0.75 which are each better than the partially encoded 

model (MSE of 0.072, R2 of 0.73). 

15 Furthermore, several parameters that might prevent tryp sin 

from cleaving a peptide were considered. These were the 

information about the 3 amino acid residues preceding and 

following the peptide of interest, as well as the average hydro- 

phobicity of several amino acid residues preceding and fol- 

2o lowing the peptide of interest. For the latter, the average 

hydrophocity of 10, 15 and 20 residues was investigated, and 

15 residues were found to provide the best results as shown in 

table 2. 

TABLE 2 

Examination ofhydrophobicity contributions from various 
length of nearest-neighbor peptides. 

Length of neighbor 
peptide R-Square MSE 

10 0.84 0.043 
15 0.86 0.038 
20 0.85 0.040 

Finally, the cleavage likelihood at each amino acid posi- 
tion, defined by the following equation, was incorporated into 
the network 

I Ix2 - Xl 
Cleavage likelihood at amino acid position = I -I 

where x1 is the number of times that the amino acid previ- 

45 ous to the first amino acid of the examined peptide was 
detected; x2 is the number of times that the first amino acid 
(C-terminus) of the examined peptide examined amino acid 
was detected and y is the total number of different LC-MS/ 
MS experiments the corresponding protein (i.e. the protein 

5o which the peptide came from) was identified. 
Finally, different numbers of hidden nodes were evaluated 

(5, 10, 15, 18, and 20) with 18 hidden nodes being found as the 
optimum number as shown in Table 3 and F1G. 2C. 

TABLE 3 

The influence of hidden node number on the ANN 
prediction accuracy. 

Hidden nodes R-Square MSE 

5 0.75 0.069 
10 0.78 0.050 
15 0.83 0.046 
18 0.84 0.043 
20 0.83 0.050 

The optimum model provided a MSE of 0.037 and R2 of 
0.86 (FIG. 2C). The addition of the peptide hydrophobicity 
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calculated by different hydrophobic scales as shown in Eisen- 

berg, D.; Schwarz, E.; Komaromy, M.; Wall, R., Analysis of 

Membrane and Surface Protein Sequences with the Hydro- 

phobic Moment Plot. Journal of Molecular Biology 1984, 

179, (1), 125-142, and Charton, M.; Charton, B. 1., The Struc- 
tural Dependence of Amino-Acid Hydrophobicity Param- 

eters. Journal of Theoretical Biology 1982, 99, (4), 629-644 

did not improve the model. 

As shown in F1G. 3, the model accuracy for predicting 

proteotypic peptides is high with 85% of the tested peptides 

having a deviation of <.+ 10% between the observed and pre- 

dicted likelihood of a peptide being proteotypic while about 

75% of the tested peptides deviated <_+5% between the 

observed and predicted values. Most of the model’s predic- 

tion capability comes from the incorporation of the fully 
encoded peptide sequence in the model, while the rest of the 

parameters have relatively minor contributions to the model’ s 

accuracy. 
F1G. 4 illustrates the peptide identification true/false posi- 

tive rates obtained from the ANN predictor for the testing 

dataset. The area under the receiver operating characteristics 

(ROC) curve (F1G. 4A) of 0.90 (close to the ideal value of 1.0) 
demonstrates that there is a 90% likelihood for the peptide to 

be correctly assigned as being proteotypic. The true/false 

positive rates at various threshold values of the ANN predic- 

tion probabilities in F1G. 4B show that peptides with a score 

>0.3 are those that are very likely correctly identified in 
LC-MS/MS analyses (i.e., a >99% true positive rate). Pep- 

tides having a score <0.1 are likely to be false positives, as 

shown in see F1G. 4B. The present predictor was thus shown 

to provide an additional level of confidence for peptide iden- 

tifications when used in conjunction with other parameters 

such as SEQUEST XCorr or a discriminant function as 
described in Strittmatter, E. F.; Kangas, L. J.; Petritis, K.; 

Mottaz, H. M.; Anderson, G. A.; Shen, Y.; Jacobs, J. M.; 
Camp, D. G., 2nd; Smith, R. D., Application of peptide LC 

retention time information in a discriminant function for pep- 

tide identification by tandem mass spectrometry. JProteome 

Res 2004, 3, (4), 760-9. 
While the invention has been described in connection with 

the specific embodiments described herein, those having 

ordinary skill in the art will recognize that the present inven- 

tion should in no way be limited to the specific details of the 

embodiment used in these experiments. 

The invention claimed is: 

1. A method for predicting that a peptide will be detected in 

a mass spectrometry based proteomic platform comprising 

the steps of: 

a. using at least one mass spectrometer, performing 

repeated analysis of a sample containing peptides from 

proteins with a known amino acid sequence, 
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b. generating a data set ofpeptides identified as contained 

within the sample by the repeated analysis, 

c. calculating the probability that a specific peptide in the 

data set was detected in the repeated analysis, 

5 d. creating a plurality of vectors, each vector having a 

plurality of dimensions, each dimension representing a 

property of one or more of the amino acids present in 

each peptide in the data set, 

e. generating an algorithm from the plurality of vectors and 

10 the calculated probabilities that specific peptides in the 

data set were detected in the repeated analysis, said 

algorithm capable of calculating the probability that a 

hypothetical peptide represented as a vector will be 

detected by a mass spectrometry based proteomic plat- 

15 form, given that the corresponding peptide is present in 

a sample introduced into a mass spectrometer. 

2. The method of claim 1 wherein the step of generating an 

algorithm from the data set is by a data driven model. 

3. The method of claim 2 wherein the data driven model is 

2o selected from the group: multivariate regression, neural net- 

work, support vector machine, and combinations thereof. 

4. An apparatus for predicting that a peptide will be 

detected in a mass spectrometry based proteomic platform 

comprising: 

25 a computer configured to: 
i. accept data from repeated mass spectrometric analysis 

of a sample containing peptides from proteins with a 

known amino acid sequence, 

ii. accept a data set of peptides identified as contained 

within the sample by the repeated analysis, 

iii. calculate the probability that a specific peptide in the 

data set was detected in the repeated analysis, 

iv. create a plurality of vectors, each vector having a 

plurality of dimensions, each dimension representing 

a property of one or more of the amino acids present in 

each peptide in the data set, 

v. generate an algorithm from the plurality of vectors and 

the calculated probabilities that specific peptides in 

the data set were detected in the repeated analysis, 

4o said algorithm capable of calculating the probability 

that a hypothetical peptide represented as a vector will 

be detected by a mass spectrometry based proteomic 

platform given that the corresponding peptide is 

present in a sample introduced into a mass spectrom- 

45 eter. 

5. The apparatus of claim 4 wherein the algorithm gener- 

ated from the data set is generated by a data driven model. 

6. The apparatus of claim 5 wherein the data driven model 

is selected from the group: multivariate regression, neural 

5o network, support vector machine, and combinations thereof. 
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