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(57) ABSTRACT

A method for predicting the elution time of a peptide in
chromatographic and electrophoretic separations by first
providing a data set of known elution times of known
peptides, then creating a plurality of vectors, each vector
having a plurality of dimensions, and each dimension rep-
resenting the elution time of amino acids present in each of
these known peptides from the data set. The elution time of
any protein is then be predicted by first creating a vector by
assigning dimensional values for the elution time of amino
acids of at least one hypothetical peptide and then calculat-
ing a predicted elution time for the vector by performing a
multivariate regression of the dimensional values of the
hypothetical peptide using the dimensional values of the
known peptides. Preferably, the multivariate regression is
accomplished by the use of an artificial neural network and
the elution times are first normalized using a transfer func-
tion.
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METHOD FOR ENHANCED ACCURACY IN
PREDICTING PEPTIDES USING LIQUID
SEPARATIONS OR CHROMATOGRAPHY

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract DE-AC0676RLO1830 awarded by the U.S.
Department of Energy. The Government has certain rights in
the invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not Applicable

REFERENCE TO SEQUENCE LISTING

Each protein sequence described herein has been submit-
ted to the United States Patent and Trademark Office on a
compact disc in computer readable form in compliance with
37 CFR §§ 1.821-1.825. A paper copy of that submission is
attached herewith. The sequence listing information
recorded in computer readable form is identical to the
written sequence listing.

BACKGROUND OF THE INVENTION

Liquid phase separations (eg. liquid chromatography and
electrophoretic separations) have long been used as inves-
tigative tools by scientists and researchers seeking to iden-
tify the structure of molecules, particularly peptides (as used
herein the term “peptides” refers to polymers having more
than one amino acid, and includes, without limitation, dipep-
tides, tripeptides, oligopeptides, and polypeptides. The term
“protein” refers to molecules containing one or more
polypeptide chains).

Proteomics involves the broad and systematic analysis of
proteins, which includes their identification, quantification,
and ultimately the attribution of one or more biological
functions. Proteomic analyses are challenging due to the
high complexity and dynamic range of protein abundances.
The industrialisation of biology requires that the systematic
analysis of expressed proteins be conducted in a high-
throughput manner and with high sensitivity, further increas-
ing the challenge. Recent technological advances in instru-
mentation, bio-informatics and automation have contributed
to progress towards this goal. Specifically, in the area of
proteomic identification, it is evident that greater specificity
benefits the ability to deal with the high complexity of
proteomes. As a result, recent efforts have focused on
improvements in separation speed, resolving power and
dynamic range, and these methods have generally been
based on the combination of separations with mass spec-
trometry (MS), using correlation of tandem mass spectra
with established protein databases or predictions from
genome sequence data for identifications.

Additionally, modern proteomics research has increas-
ingly taken advantage of the ability of liquid chromatogra-
phy to identify proteins from their elution time from a
chromatographic column. The information gleaned from a
liquid chromatograph can be enhanced by identifying the
molecule’s mass, or mass to charge, by coupling the liquid
chromatograph either on line or off line, with a mass
spectrometer. Common methods include offline tryptic
digestion and subsequent electrophoretic or chromato-
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graphic separation with matrix-assisted laser desorption/
ionization or electrospray time-of-flight or ion trap mass
spectrometry. Capillary electrophoresis, mass spectrometry
or liquid chromatography/mass spectrometry coupled online
via electrospray interfaces have also been used to analyze
tryptic and other digests of complex biological samples such
as whole cell lysates and human body fluids. The dynamic
range of the mass spectrometer in these methods may be
limited when a sample is directly infused by ion suppression
in the electrospray and the detector. Further, the dynamic
range of Fourier transform ion cyclotron resonance (FTICR)
and ion trap mass spectrometers can be limited by the
storage capacity within the instrument, although it has been
shown that the use of a mass selective quadrupole to
selectively load the FTICR cell.

Researchers attempting to enhance the accuracy of these
methods have devised a number of schemes to increase their
accuracy. For example, in the paper “Prediction of Chro-
matographic Retention and Protein Identification in Liquid
Chromatography/Mass Spectrometry” Magnus Palmblad,
Margareta Ramstrom, Karin E. Markides, Per Hakansson,
and Jonas Bergquist, Aralytic Chemistry p. 4-9, 2002, the
authors describe a method for using the information from
liquid separation schemes such as chromatography and
electrophoretic methods, to improve peptide mass finger-
printing based on accurate mass measurement. The author’s
concede that the resolving power and accuracy in chromato-
graphic separations are several orders of magnitude lower
than in mass spectrometry, but they contend that the infor-
mation is complementary in nature and available at negli-
gible computational cost and at no additional experimental
cost. Briefly, the method described in the Palmblad paper
assigns “retention coeflicients” for the 20 amino acids, as
well as the number of each amino acid, a term that com-
pensates for void volumes and a delay between sample
injection and acquisition of mass spectra. The parameters are
then fitted by the least squares method to experimental data
from ~70 BSA peptides of ~100 HAS and transferrin pep-
tides putatively identified by accurate mass measurement
and high relative intensities in the mass spectra. The authors
found that “the accuracy of the predictor was found to be
8-10% when “trained” by each of the six BSA and CSF data
sets.” While approaches such as that described in the Palm-
blad paper provide some useful information, their utility is
limited by the accuracy of the predictions.

Thus, at the present, there are two major approaches for
proteomic analyses. The first one consists of the off-line
combination of two-dimensional polyacrylamide electro-
phoresis (2D-PAGE) with MS. The proteins are first sepa-
rated in a gel by their pl and mass and then the protein
“spots” are enzymatically hydrolysed resulting in peptide
mixtures which are analysed by matrix assisted laser des-
orption ionisation-time of flight (MALDI-TOF) or electro-
spray (ESI)-MS. Another rapid evolving approach consists
of a global proteome-wide enzymatic digestion followed by
analysis using on-line 1-D or 2-D liquid chromatography
(LC) coupled with ESI-MS. The detection of the peptides is
achieved by tandem MS (7,13) or more recently by single
stage Fourier transform ion cyclotron resonance (FTICR)-
MS, which provides high sensitivity, large dynamic range
and high throughput in routine applications by circumvent-
ing the need for tandem MS.

An aspect of proteomic analysis that has not yet been
exploited involves use of the information available from the
separations (eg. L.C elution time). Indeed, retention time in
LC is unique and structurally dependent for a defined
experiment (mobile phase composition, stationary phase
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etc.). If there is a way to predict the LC retention time for a
given peptide structure, then this could be used in conjunc-
tion with either MS/MS data to improve the confidence of
peptide identifications and/or increase the number of peptide
identifications, or, with sufficiently high accuracy MS, to
reduce the need for MS/MS data (i.e. if the prediction is
reliable enough).

The idea that chromatographic behaviour of peptides
could be predicted based on the amino acid composition is
not new. In 1951, Knight and Pardee showed that synthetic
peptides retention factor (R,) values on paper chromatogra-
phy could be predicted with some accuracy. In 1952, Sanger
introduced the problem of isomers by demonstrating that the
relationship between R and composition was not absolutely
accurate since peptides containing the same amino acids but
having difference sequences could frequently be separated.
More recently, there have been several reports on the pre-
diction of peptide elution times in reversed-phase (RP) or
normal phase liquid chromatography. These methods used
quantitative structure-chromatographic retention relation-
ships (QSRR’s) (e.g. partial least square or multiple linear
regression) for the peptide elution time prediction. Casal et
al. demonstrated that partial least squares regression pro-
vides a better predictive ability with these models using a
mixture of 25 small standard peptides. One limitation of
these models is that they are most effective for peptides with
less than 15-20 amino acid residues.

Another approach, based on artificial neural networks
(ANNSs), has demonstrated better predictive capabilities in
several areas of chemistry including: (i) conformational
states for small peptides (31), (ii) carbon-13 nuclear mag-
netic resonance chemical shifts and (iii) the retardation
factor or retention time of small molecules in thin layer
chromatography, GC and L.C. While these advances are
significant, until the present invention, those having skill in
the art have not yet used ANNs for peptide elution time
prediction.

Accordingly, there remains a need for improved methods
for predicting the identity of peptides and proteins.

BRIEF SUMMARY OF THE INVENTION

Accordingly, iris an object of the present invention to
provide a method for predicting the elution or retention
times of chemically related compounds such as proteins and
peptide in liquid separations. As used herein, “liquid sepa-
rations” includes, but is not limited to, liquid chromatogra-
phy, both standard and reverse phase, electrophoretic sepa-
rations, such as capillary electrophoresis; field flow
fractionation, and methods whereby one or more of these
techniques are combined. The present invention accom-
plishes this objective by first providing a data set of known
elution times of known peptides. This data is typically taken
from multiple separation experiments. It is then a further
object of the present invention to create a plurality of
vectors, each vector having a plurality of dimensions, and
each dimension representing the amino acids present in each
of these known peptides from the data set. As used herein,
the term “vector” means an ordered collection of n dimen-
sions; such that a vector having n attributes is an ordered
collection of n dimensions. The elution time of any protein
may then be predicted by first creating a vector by assigning
dimensional values for the amino acids of at least one
hypothetical peptide and then calculating a predicted elution
time for the vector by performing a multivariate regression
of the dimensional values of the hypothetical peptide using
the dimensional values of the known peptides. Preferably,
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the multivariate regression is accomplished by the use of an
artificial neural network (hereinafter referred to as an
“ANN™), and more preferably, the ANN is a “feed forward”
ANN. Training the ANN may be accomplished by any of the
training methods known in the art, including, but not limited
to gradient descent algorithms and conjugate gradient algo-
rithms. Preferred gradient descent algorithms include, but
arc not limited to a backpropagation algorithm and a quick-
prop algorithm. Prior to the assignment of the vectors
assigned to each of the known peptides in the data set and
the dimensional values of the hypothetical peptide, it is
preferable to normalize the elution times of the multiple
separation experiments used to generate the data set using a
linear or non-linear function. It is further preferred to
optimize this Function by performing multiple regressions.
The preferred method for the multiple regressions is a
genetic algorithm.

The operation and use of the method of the present
invention is described in a detailed description of a preferred
embodiment of the present invention below. Those having
skill in the art will readily recognize equivalent methods
exist for the particular algorithms selected for the multivari-
ate regression, the transfer function, and the method used to
train the ANN in this preferred embodiment. Similarly,
while the preferred embodiment describes the method of the
present invention as it was applied in a liquid chromatograph
coupled with a mass spectrometer, those having skill in the
art will recognize that the method of the present invention is
applicable with or without the use of the mass spectrometer,
and the data provided by the mass spectrometer. Further,
those having skill in the art will similarly recognize that the
benefits provided by the present invention are also appli-
cable if the mass spectrometer is replaced with other suitable
detection means. It will also be apparent that while the
preferred embodiment describes the method of the present
invention in conjunction with liquid chromatography, the
present invention should be understood to include both
normal and reversed phase chromatography, and further may
readily be utilized with other separation techniques, includ-
ing without limitation, electrophoretic separations. Accord-
ingly, it will be apparent to those skilled in the art that many
changes and modifications may be made from the preferred
embodiment described herein without departing from the
invention in its broader aspects, and all separation method-
ologies, whether used with or without a detection means
such as a mass spectrometer, and all equivalent algorithms
for the multivariate regression, transfer functions, and meth-
ods used to train an ANN should be interpreted as falling
within the true spirit and scope of the invention as set forth
in the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIG. 1 is a schematic drawing of a typical three layer
neural network showing the flow of signals from left to right.

FIG. 2 is a schematic drawing showing the recombination
of two parent’s genes into a new offspring in a genetic
algorithm.

FIG. 3 is a schematic drawing showing the 20-2-1 neural
network architecture used in a preferred embodiment of the
present invention.

FIG. 4 is a graph showing measured vs. predicted nor-
malised elution times among 42378 S. oneidensis peptides
from 157 experiments which have been identified (a) 3 times
(7080 peptides ), (b) 20 times (1270 peptides), (c) 40 times
(536 peptides), (d) 60 times (259 peptides).
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FIG. 5 is a graph showing the prediction error distribution
for 1270 S. oneidensis peptides that were tentatively iden-
tified at least 20 times using the program SEQUEST. The
graph shows the fraction of peptides vs. the NET error
levels. For example, the graph shows that 50% of the
peptides have less than a 3% prediction error, and more than
95% have less than 10% error.

FIG. 6 is a schematic of an example of the more confident
identification of two isobaric peptides by using peptide
predicted elution times as an additional metric. The isobaric
peptides LPNHIQVDDLRQLLDV (SEQ ID No. 1) and
VAINDTDNHTLAHLLK (SEQ ID No. 2) have a different
normalised elution time (NET), which has allowed their
differentiation. The figure shows the total ion current (TIC),
the corresponding extracted ion currents (EIC) and the mass
spectra of these peptides.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

A set of experiments was undertaken to demonstrate a
preferred embodiment of the present invention. Briefly, an
ANN was deployed for predicting the reversed-phase liquid
chromatography retention times of peptides enzymatically
digested from proteome-wide proteins. In order to enable the
comparison of the numerous LC-MS data sets, a genetic
algorithm (hereinafter “GA”) was developed to normalize
the peptide retention data into a range (from 0 to 1),
improving the peptide elution time reproducibility to about
1%. The network developed in this study was based on
amino acid residue composition and consists of 20 input, 2
hidden and 1 output nodes (20-2-1). A data set of about 7000
confidently identified peptides from the microorganism
Deinococcus radiodurans was used for the training of the
ANN. The ANN was then used to predict the elution times
for another set of 5200 peptides tentatively identified by
MS/MS from a different microorganism (Shewanella
oneidensis). The model was found to predict the peptides of
elution time with up to 54 amino acid residues (the longest
peptide identified after tryptic hydrolysis of S. oneidensis)
with an average accuracy of ~3%. This predictive capability
was then used to distinguish with high confidence isobar
peptides otherwise indistinguishable with Fourier transform
ion cyclotron resonance mass spectrometry as well as to
uncover peptide misidentifications. Thus, integration of
ANN peptide elution time prediction in the proteomic
research will increase both the number of protein identifi-
cations and their confidence.

D. radiodurans and S. oneidensis cells were cultured in
TGY medium to an approximate 600 OD of 1.2 and har-
vested by centrifugation at 10,000 g at 4° C. Prior to lysis,
cells were resuspended and washed three times with 100
mM ammonium bicarbonate and 5 mM EDTA (pH 8.4).
Cells were lysed by beating with 0.1-mm acid zirconium
beads for three 1-min cycles at 5000 rpm. The samples were
incubated on ice for 5 min between each cycle of bead
beating. The supernatant containing soluble cytosolic pro-
teins was recovered after centrifugation at 15,000 g for 15
min to remove cell debris. Proteins were denatured and
reduced by addition of guanidine hydrochloride (6 M) and
DTT (1 mM), respectively, followed by boiling for 5 min.
Prior to digestion, samples were desalted using a 5000
molecular weight cut-off “D-salt” gravity column (Pierce,
Rockfor, 111.) equilibrated in 100 mM ammonium bicarbon-
ate (pH 8.4). Proteins were enzymatically digested at an
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enzyme/protein ration of 1:50 (w/w) using sequencing grade
modified trypsin (Promega, Madison, Wis.) at 37° C. for 16
h

HPLC-grade water and acetonitrile were purchased from
Aldrich (Milwaukee, Wis.). Fused-silica capillary columns
(30-60 cm, 150 pm i.d.x360 um o.d., Polymicro Technolo-
gies, Phoenix, Ariz.) were then packed with 5-um CI18
particles as described in Shen, Y.; Zhao, R.; Belov, M. E.;
Conrads, T. P.; Anderson, G. A.; Tang, K.; Pasa-Tolic L.;
Veenstra, T. D.; Lipton, M. S.; Udseth, H. R.; Smith, R. D.;
Anal. Chem. 2001, 73, 17661775, the entire contents of
which are hereby incorporated herein by this reference.
Briefly, capillary RPLC was performed using an ISCO LC
system (model 100DM, ISCO, Lincoln, Neb.). The mobile
phases for gradient elution were (A) acetic acid/TFA/water
(0.2:0.05:100 v/v) and (B) TFA/acetonitrile/water (0.1:90:
10, v/v). The mobile phases, delivered at 5000 psi using two
ISCO pumps, were mixed in a stainless steel mixer (~2.8
ml) with a magnetic stirrer before flow splitting and enter-
ing the separation capillary. Fused-silica capillary flow split-
ters (30-mm i.d. with various lengths) were used to manipu-
late the gradient speed. Capillary RPLC was coupled on-line
with MS through an ESI interface (a stainless steel union
was used to connect an ESI emitter and the capillary
separation column). The peptide database has been gener-
ated by using several mass spectrometers including 3.5, 7,
and 11.4 telsa FTICR instruments (described in detail in
Harkewicz, R.; Belov, M. E.; Anderson, G. A.; Pasa-Toli¢,
L.; Masselon, C. D.; Prior, D. C.; Udseth, H. R.; Smith, R.
D.; J. Am. Soc. Mass Spectrom. 2002, 13, 144-154, and
references therein, the entire contents of which are hereby
incorporated by this reference), as well as several ion-trap
mass spectrometers (LCQ, LCQ Duo, LCQ DecaXP; Ther-
moFinnigan, San Jose, Calif.). The ANN software used was
NeuroWindows version 4.5 (Ward Systems Group, USA)
and utilized a standard backpropagation algorithm on a
Pentium 1.5 GHz personal computer.

ANNSs based approaches have advantages in comparison
with classical statistical methods that include a capacity to
self-learn and to model complex data without the need for
detailed understanding of the underlying phenomena.

A feed-forward neural network model, sometimes called
a backpropagation neural network due to its most common
learning algorithm, was used for these experiments. It is
composed of large number of neurons, nodes, or processing
elements organised into a sequence of layers, as described in
Werbos, P. J.; Beyond regression: New tools for predictive
and analysis in the behavioural sciences, PhD Thesis, Har-
vard University, Cambridge, Mass., 1974, and Werbos, P. J.;
The Roots of Backpropagation, John Wiley & Sons, New
York, 1994, the entire contents of each of which are hereby
incorporated herein by this reference. The architecture of
these ANN models contain at least two layers: an input layer
with one node for each variable in a data vector and, an
output layer consisting of one node for each variable to be
investigated. Additionally, one or more hidden layers can be
added between the input and output layer if the complexity
of the data so require. Nodes in any layer can be fully or
partially connected to nodes of a succeeding layer as shown
in FIG. 1, where each hidden or output node receives signals
in parallel. The input signal to a node is modulated by a
weight (w) along each link. The net input to a node is thus
a function of all signals to a node and all of its associated
weights. For example the net input for a node j is given by:
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(Eq-1)

netj = Z Wj;O;
i

Where i represents nodes in the previous layer, w;, is the
weight associated with the connection from node i to node
j, and O, is the output of node i.

The final output signal of a node is usually confined to a
specified interval, say between zero and one. The net input
to the neuron thus underwent an additional transformation
using a transtfer function. There are several transfer functions
available, satisfying a requirement of continuity, set by the
backpropagation algorithm. The most popular one is the
sigmoid function given by:

1 (Eq-2)
0; =
T (1 + et

In essence, these equations applied to nodes in the hidden
and output layers allows these ANNs to perform multiple
multivariate non-linear regression using sigmoidal func-
tions, and because of the parallel processing of nodes within
each layer, these ANNs have the ability to learn multivariate
non-linear functions.

The process of adapting the weights to an optimum set of
values is called training the neural network. In order to train
the neural network there exist several training algorithms.
Examples of such functions are detailed in Rumelhart, D. E.;
Hinton, G. E.; Williams, R. J.; Learning internal represen-
tations by error propagation, Parallel Distrubuted Process-
ing: Explorations in the Microstructures of Cognition. Vol.
1: Foundations, Rumelhart, D. E.; McClelland, J. L.; (eds.),
MIT Press, Cambridge, Mass., USA, pp. 318-362, 1986, the
entire contents of which are hereby incorporated herein by
this reference. The backpropagation algorithm selected for
these experiments is one example, however, the present
invention should in no way be viewed as limited to this
example.

An “intelligent” algorithm for the normalization of reten-
tion time was desired to compare a large number of LC-MS
experiments, due to the variability associated with constant
high-pressure capillary L.C separations using syringe pumps.
Small changes in split ratio, column lengths, column pack-
ings, void volumes etc. have been known to lead to some
retention time variability. Thus, all peptide retention times
were normalized to the range [0, 1] by using a genetic
algorithm (GA).

As described in Holland, J. H.; Adaptation in Natural and
Artificial Systems. University of Michigan Press, Ann
Arbor, Mich., 1975, and Goldberg, D. E.; Genetic Algo-
rithms in Search, Optimisation and Machine Learning. Addi-
son-Wesley, Reading, Miss., 1989, (the entire contents of
each of which are hereby incorporated herein by this refer-
ence), a GA is an algorithm based on evolutionary compu-
tation and survival of the fittest, and is often applied to
optimization problems such as optimizing the free variables
in a hypothesis function. Solutions to problems are coded as
individuals, which evolve through generations. An indi-
vidual in our coding is a vector of real values (line functions)
of slopes and intercepts for each experiment being normal-
ized. The fittest individuals in each generation breed the next
generation through crossover and mutation operators,
recombining best “genes.” The “genes” in the offsprings are
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then perturbed in the next step by a small value and by a
small probability. This iterative process causes the best
solution, the fittest individuals, to be incrementally refined.

The GA was applied to 51,150 (9,121 different) peptides
identified from 687 LC-MS-MS analyses to establish a
common timeline so that the same peptides eluted at the
same normalized elution time (NET) in the different sepa-
rations. The GA was set up to optimise the two linear
equation variables, k and m in y=kx+m, for each experiment
(FIG. 2 shows coding of the individuals): one variable (m)
normalized the start of the recording time and the other (k)
normalized the gradient speed. The GA optimised these two
variables for each separation to reduce the variance function
of specific peptides, i.e. the regressed elution times for each
separation. This optimization scheme of multiple linear
regressions normalized the peptide elution times into a
common [0,1] range.

The average variance of NETs for the peptides (5270)
detected in more than one experiment is 0.000276 (standard
deviation 0.016615). Preferably, while not meant to be
limiting, a set of standard peptides is selected which elute at
the beginning, the middle and the end of the chromatogram
to further improve the normalization of retention times.

The ANN training set consisted of 6958 confidently
identified D. radiodurans peptides measured by the RPLC/
ESI-ion-trap MS, and further verified with high mass mea-
surement accuracy using RPLC-ESI-FTICR-MS to exist in
the D. radiodurans polypeptide mixture. Each peptide was
coded as a 20-dimensional vector consisting of the normal-
ized number of each of the 20 amino acid residues making
up the peptides. Each residue count was normalized to a
fraction of the maximum count of that residue in any peptide
in the D. radiodurans database. These peptide code vectors
were repeatedly input into the ANN by the back-propagation
algorithm to reduce output error. The output error is the
squared difference between a target value of the ANN and
the predicted value. In this case the target values were the
known NETs of the peptides. The ANN thus learned the
relationship between the coded peptide vectors and their
measured NETs.

The hidden layer(s) configuration for the ANN was
empirically determined by using a cross-validation data set
during training. In general, a hidden layer with too few
nodes may not sufficiently model the data. A hidden layer
with too many nodes may overfit the data in the training set
and not provide an effective predictive capability for new
data. The ANN was trained with 97% of the DR peptides and
cross-validated with the remaining data. Typically the cross-
validation data sets are used to stop the training when the
error for the data set ceases to decrease. Going beyond this
point suggests that the ANN “learns” from noise in the
training set that is not present in the cross-validation set. The
experience in training ANNs with peptide elution data
showed that the ANN could not be over-trained. Both the
errors on the training and the cross-validation data sets
rapidly converged to minimum values. A small improvement
was realized by using 2 node hidden layer instead of no
hidden layers. Increasing to three hidden nodes made an
even smaller improvement. Table 1 shows error rates as a
function of the number of hidden layer nodes in seven
training sessions. The hidden layer could be increased to a
large number of nodes without the back-propagation algo-
rithm being able to reduce the errors or being able to overfit
the data. A hidden layer with two nodes was used since it
reduced the error to a near optimal level without potentially
sacrificing generality. The training was stopped at 1000
epochs, as the errors appeared to have converged at different
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learning rates ranging from 0.001 to 0.1. The final ANN
model with 20 input—2 hidden—and one output nodes
(20-2-1) is depicted in FIG. 3.

Table 2 summarizes the calculated ANN weights of amino
acid residues after training with the D. radiodurans peptides.
From the weights we see that leucine is the amino acid that
most affects peptide retention times.

The ANN model was evaluated using peptides identified
from the microorganism S. oneidensis, using RPLC-ESI-ion
trap MS/MS. The average error for predicting S. oneidensis
NETs for 7080 peptides from 157 analyses was 0.047983 or
~4.8%. FIG. 4a shows a plot of the predicted Nets for 7080
S. oneidensis peptides identified in 157 different separations.
These results should be considered worst case because of the
uncertainly in peptide identifications—sS. oneidensis pep-
tides, unlike the D. radiodurans peptides in the training set,
were not validated using accurate mass measurements—.
Furthermore the data in FIG. 4a, suggests the extremes in
errors for L.C elution predictions but does not clearly show
the distribution of errors around the mean. The plot also
includes errors due to variations between separations, which
are not fully eliminated in the normalization process (and
would benefit from the use of elution time calibrants).

A significant number of S. oneidensis peptides were
identified one or only a few times across all 157 experi-
ments, suggesting that they may be miss-identifications.
This is supported by the observation that the average pre-
diction error decreases rapidly when the model is tested with
peptides required to occur in increasing number of experi-
ments. A more rigorous error measurement from S. oneiden-
sis peptides from the same number of experiments, and each
peptide occurring at least 20, 40 or 60 times to reduce
spurious misidentifications, yielded an average error of 3.86,
3.67 and 3.66% respectively (see FIG. 45-d). It can be seen
that the peptides with poor correlation with these experi-
ments (i.e. highly dispersed in the plots) are eliminated when
only the peptides occurred at least 60 times were selected,
again suggesting that infrequently seen peptides are possibly
misidentified. Furthermore, preliminary LC-FTICR experi-
ments of the S. oneidensis implied that multiple ion-trap
identifications are probably correct based on accurate mass
measurements. Thus, as the probability of correct identifi-
cations is increased, a better correspondence with predicted
elution times is observed.

FIG. 5 shows the error distribution of these 1270 S.
oneidensis peptides which have been identified at least 20
times. This curve is assumed to approach the true distribu-
tion of the prediction model’s performance for correctly
identified peptides. For this peptide set, 50% are predicted
within +/-2.97% of the measured NETs, and more than 95%
are predicted within +/-10% of the measured NETs.

One of the major advantages of our model in relation to
previous ones is that it provides more accurate prediction for
longer peptides. As it can been seen from Table 3, the
average error is very low for peptides up to 20-mer size, the
error then increases just slightly for longer peptides.

The very fact that not all peptides can be correctly
identified by either accurate mass measurement or MS/MS
experiments has prompted this research into utilizing elution
time as an additional metric for identifying peptides. The use
of peptide elution prediction will be particularly interesting
for the identification of isobaric peptides by LC-FTICR. As
it can be seen from FIG. 6 it was possible to distinguish
between the isobaric D. radiodurans peptides LPNHIQVD-
DLRQLLDV (SEQ ID No. 1) and VAINDTDNHT-
LAHLLK (SEQ ID No. 2) due to their significantly different
elution times, accurately predicted with our model. While
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these two peptides have the same molecular formula, inter-
estingly they have different charges. Furthermore, as shown
from Table 4, several isobaric peptides (undistinguishable
even with 1 ppm mass accuracy) have different retention
times and were identified with our model. Moreover, it is
also possible to distinguish isomeric peptides, which have
different Ile/Leu ratios (i.e. IVIEIK (SEQ ID No.3) and
VILLEK (SEQ ID No. 4)) due to the different ANN weights
assigned to these amino acid residues. Some of the peptides
of course will have very similar retention times (i.e. the
isobar peptides ANAAINSGAFK (SEQ ID No. 8) and
ITAAGANVVR (SEQ ID No. 9) have the same NET=0.26,
data not shown). This approach will be even more useful for
proteomes of higher complexity, where the number of pos-
sible peptides is greatly increased. For example, in a typical
7 ppm “window” between 1605.851 and 1605.863 Da, the
human proteome codes for 12 tryptic peptides. But, three
peptides (QTFEAAILTQLHPR (SEQ ID No. 5), TLH-
SLTQWNGLINK (SEQ ID No. 6) and LLFLVGTASNP-
HEAR (SEQ ID No. 7)) have masses of 1605.86264 Da and
are indistinguishable by mass. Importantly, however, these
peptides are predicted to have much different predicted LC
retention times.

It must be pointed out that the preferred embodiment
described herein only takes into account the peptides amino
acid composition and not their sequence, thus isomeric
peptides (same amino acids in a different order) are pre-
dicted to elute at the same time, although it has been shown
that such peptides are often separated in L.C. Sequence-
dependent effects such as conformational and nearest-neigh-
bor effects may be additional factors for deviations from
predicted retention times. Recently, Wimley et al. (52) have
shown that occlusion effects may occur in the case of guest
(X) side chains in the host-guest pentapeptides ACWL-X-
LL that may lead in changes in the overall hydrophobicity of
the peptide. The present invention should be understood to
encompass more sophisticated ANNs than those described in
these experiments, which would incorporate selected
sequence features, thereby enhancing the predictions,
including the ability to distinguish sequence variations.
These ANNs would utilize larger experimental datasets
relative to different peptide retention times described herein,
which would further include some aspects of sequence
information in the ANN. Finally the experiments described
herein have an inherent weakness relative to the use of
tryptic peptides for its training. Thus, the peptides used in
this study include Arg and Lys only once, except when
miscleavages occur. Due to their basic character these amino
acids change the pKa/apparent charge of these peptides, and
consequently their retention times. As a result the values
given for Arg and Lys might not apply for non-tryptic
peptides having additional Arg or Lys residues in their
structure. While this should not be a problem in the case of
ideal trypsin proteolysis, such miscleavages are commonly
observed in global proteomic studies. To overcome this
problem, the ANN should be trained to more correctly
predict retention times for peptides containing more than
one Lys or Arg residue.

CLOSURE

While a preferred embodiment of the present invention
has been shown and described, it will be apparent to those
skilled in the art that many changes and modifications may
be made without departing from the invention in its broader
aspects. The appended claims are therefore intended to cover
all such changes and modifications as fall within the true
spirit and scope of the invention.
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SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 9

<210> SEQ ID NO 1

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Deinococcus radiodurans

<400> SEQUENCE: 1

Leu Pro Asn His Ile Gln Val Asp Asp Leu Arg Gln Leu Leu Asp Val
1 5 10 15

<210> SEQ ID NO 2

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Deinococcus radiodurans

<400> SEQUENCE: 2

Val Ala Ile Asn Asp Thr Asp Asn His Thr Leu Ala His Leu Leu Lys
1 5 10 15

<210> SEQ ID NO 3

<211> LENGTH: 6

<212> TYPE: PRT

<213> ORGANISM: unknown

<220> FEATURE:

<223> OTHER INFORMATION: illustrative example

<400> SEQUENCE: 3

Ile Val Ile Glu Ile Lys
1 5

<210> SEQ ID NO 4

<211> LENGTH: 6

<212> TYPE: PRT

<213> ORGANISM: unknown

<220> FEATURE:

<223> OTHER INFORMATION: illustrative example

<400> SEQUENCE: 4

Val Ile Leu Leu Glu Lys
1 5

<210> SEQ ID NO 5

<211> LENGTH: 14

<212> TYPE: PRT

<213> ORGANISM: unknown

<220> FEATURE:

<223> OTHER INFORMATION: illustrative example

<400> SEQUENCE: 5

Gln Thr Phe Glu Ala Ala Ile Leu Thr Gln Leu His Pro Arg
1 5 10

<210> SEQ ID NO 6

<211> LENGTH: 14

<212> TYPE: PRT

<213> ORGANISM: unknown

<220> FEATURE:

<223> OTHER INFORMATION: illustrative example

<400> SEQUENCE: 6

Thr Leu His Ser Leu Thr Gln Trp Asn Gly Leu Ile Asn Lys
1 5 10
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-continued

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 7
LENGTH: 15
TYPE: PRT
ORGANISM:
FEATURE:
OTHER INFORMATION:

unknown
illustrative example

<400> SEQUENCE: 7

Leu Leu Phe Leu Val Gly Thr Ala Ser Asn Pro His Glu Ala Arg

1 5 10

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 8
LENGTH: 11
TYPE: PRT
ORGANISM:
FEATURE:
OTHER INFORMATION:

unknown
illustrative example
<400> SEQUENCE: 8

Ala Asn Ala Ala Ile Asn
1 5

Ser Gly Ala Phe Lys
10

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 9
LENGTH: 10
TYPE: PRT
ORGANISM:
FEATURE:
OTHER INFORMATION:

unknown
illustrative example
<400> SEQUENCE: 9

Ile Ile Ala Ala Gly Ala
1 5

Asn Val Val Arg
10

15

The invention claimed is:

1. A method for predicting the elution time of peptides in
liquid separations comprising the steps of:

a. providing a data set of known elution times of known

peptides,

b. creating a plurality of vectors, each vector having
twenty dimensions, each dimension representing an
amino acid potentially present in each of said known
peptides, and each vector associated with the elution
time of said peptide,

c. creating a hypothetical vector by assigning dimensional
values for at least one hypothetical peptide, and

d. calculating a predicted elution time for said hypotheti-
cal vector by performing at least one multivariate
regression fitting said hypothetical peptide to said plu-
rality of vectors.

2. The method of claim 1 comprising the further step of
normalizing the known elution times prior to creating said
plurality of vectors.

3. The method of claim 1 wherein the multivariate regres-
sion is performed using an artificial neural network.

4. The method of claim 3 wherein the artificial neural
network trained with a method selected from the group
consisting of gradient descent algorithms and conjugate
gradient algorithms.
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5. The method of claim 4 wherein the artificial neural
network trained with a gradient descent algorithm selected
from the group consisting of a backpropagation algorithm
and a quickprop algorithm.

6. The method of claim 2 wherein normalization is
performed by optimizing a function using multiple regres-
sions.

7. The method of claim 6 wherein the multiple regressions
are calculated using a genetic algorithm.

8. The method of claim 6 wherein the function is selected
from the group consisting of linear and non-linear functions.

9. The method of claim 1 wherein the liquid separation is
performed by a method selected from the group consisting
of liquid chromatography, both standard and reverse phase,
electrophoretic separations, capillary electrophoresis; field
flow fractionation, and combinations thereof.
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