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Waste Retrieval from Nuclear Waste Storage 
Tanks

Composition Storage andwater spray for
dissolving salt cake

p
Monitoring
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Photograph of Interior of Single Shell 
Hanford TankHanford Tank
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Tank Farm Chemical Inventory, Hanford Site
Tank Farm Chemical Inventory
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Current Retrieval Capability

Flow
Gamma monitorGamma monitor
Grab samples

OnOn--line Realline Real--time Process Monitortime Process MonitorOnOn--line Realline Real--time Process Monitortime Process Monitor
Continuous real-time monitoring of retrieval composition
 Immediate status and composition of retrieval
 Retrieval summary from start of processing

Process monitor benefits process performancep p
 cost savings
 doesn’t require personnel involvement to grab samples
 doesn’t interrupt continuous retrieval
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 doesn t interrupt continuous retrieval
 easily adaptable for variable waste applications



Process Monitor Features

Instrumentation was configured for remote monitoring (spoolpiece, 
fiber optic, cables)

Coriolis and conductivity metersCoriolis and conductivity meters
Straight data readout; density, flow, conductivity

Raman
Output spectral files

Methodology of data processing
Chemometric data treatment
Two independent chemometric models

Total sodium concentration (conductivity, density, temp)
8 individual sodium salt concentrations (Raman spectra)

NO3
-, NO2

-, PO4
3-, CO3

2-, CrO4
2-, OH-, SO4

2-, Al(OH)4
-

Data acquisition
Data storage-archiving
Display 
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MatLab-based software to process, store, and display data



Measurements needed for the development 
of chemometric modelof chemometric model

Raman signal conductivity and density depend upon:Raman signal, conductivity, and density depend upon:
Solution composition and ionic strength

Measure solutions of individual Na salts and mixtures in wide 
concentration rangeconcentration range

Temperature
Presence of bubbles and solid particulates

Instrument performance at variable flow rate
Measure solutions in static mode and under variable flow rate

Acceptance Test:  
Verify chemometric model using early and late feed simulant
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Verify chemometric model using early and late feed simulant 
solutions



Static Measurements

86 solutions were prepared and measured by Raman, Coriolis, and conductivity 
sensors at room and several elevated temperatures.
Solids as Fe(OH) or bentonite were added to the selected solutions andSolids as Fe(OH)3 or bentonite were added to the selected solutions and 
measured.
Preliminary chemometric model was developed using static measurements.
Single component and multiple mixture standards usedSingle component and multiple mixture standards used 

component concentration range
NO3

- 4 – 40 wt%NO3 4 – 40 wt% 
NO2

-, 3 – 34 wt% 
PO4

3-, 1.5 – 15 wt%
CO3

2-, 1.5 – 15 wt%3 ,
CrO4

2-, 0.8 – 8 wt%
OH-, 1 – 20 wt%
SO4

2-, 2 – 20 wt%
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Al(OH)4
- 0.8 – 8 wt%



Flow Mesurements

Total 6 flow tests were performed:
5 tests used laboratory bench top flow loop;5 tests used laboratory bench-top flow loop;
1 test combined field manifold and laboratory flow loop.

Flow rate studied; 2 - 20 GPM range.
Temperature was varied from 15 to 50°C.
N2 Bubbles were introduced into flow system at controlled variable 
rates up to 6% of the solution flow rate.
Eff t f F (OH) lid t di d t 1% lid l diEffect of Fe(OH)3 solids was studied; up to 1% solids loading.
Revised Raman chemometric model incorporated flow measurements.
Sodium model for prediction of total Na concentration was developed 
b d d ti it / d it / t t tbased on conductivity / density / temperature measurements.
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Photo of Process Monitor EquipmentPhoto of Process Monitor Equipment
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Raman Spectra of Ionic SpeciesRaman Spectra of Ionic SpeciesRaman Spectra of Ionic SpeciesRaman Spectra of Ionic Speciesp pp pp pp p
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Temperature influence on spectra

variable temperature nitrate solutions
nitrate region is insensitive to temperature variation 
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Added Solids Reduce Raman Signal

Mix 12 with added Fe(OH)3 solids Mix 12 with added Fe(OH)3 solids
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Raman Model

P i I Cl i l L t S b d d lPrimary Ions use Classical Least Squares-based model 
Calibration steps

Normalize to OH stretch (to correct for intensity variations) then use 
1st derivative (to reduce impact of luminescence backgrounds)
Use only low spectral range (salts 517-1836 cm-1; OH- >2670 cm-1)
Estimate "pure component spectra" (what each species would look 
like if it were alone in solution) for each ionic species
Allow more than one possible spectrum from each species (becauseAllow more than one possible spectrum from each species (because 
some spectral peaks shift in highly concentrated solutions). Allows 
approximation and handling of "non-linear" spectral behavior
Include additional "background" spectra (estimates of interferences) 
to account for other backgrounds

0.2

0.25

Normalization reference,
then use for OH- ion only

Take 1st derivative and
use for all other ions.

0.05

0.1

0.15
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Raman Model Prediction of ConcentrationsRaman Model Prediction of ConcentrationsRaman Model Prediction of ConcentrationsRaman Model Prediction of Concentrations

60tio
n

40

50

60

C
on

ce
nt

ra
t

NO3-1   

mix-1   
mix-5   

20

30

To
ta

l I
on

 C

NO2-1   

SiO4-2  

mix-3   

mix-7   

mix-12  

mix-14  

mix-16  

mix-22

mix-23  

i 24
mix-35  

mix-36  

mix-37  

mix-39  
mix-41  

mix-43  

0 5 10 15 20 25 30 35
-10

0

10

P
re

di
ct

ed
 T

AlO2-3  PO4-3   
NaOH-1 R
NaOH-6 R

mix 22  mix-24  
mix-26  

mix-30  mix-33  
mix-34  

mix-40  

0 5 10 15 20 25 30 35

Actual total Ion Concentration

P

total ion concentration displayed (sum of all calculated species)

18

total ion concentration displayed (sum of all calculated species)



Sodium Model

Measure: Density (x1), Conductivity (x2), Temperature (x3)
Create non-linear combination of these variables to the data (x1

2, 
2 2 / / / / ) Gi t t l f 15x2
2, x3

2, x1x2, x1x3, … , x1/x2, x1/x3 , x2/x1, x2/x3, ...) Gives a total of 15 
variables.
Use Genetic Algorithm to select "best" variables (those that give 
lowest error of cross-validation from PLS model))
Results include 5 variables: density, density2, density*conductivity, 

conductivity*temperature, density/conductivity
Use Partial Least Squares (PLS) and Locally-Weighted 
R i (LWR) t di t di t tiRegression (LWR) to predict sodium concentration.
LWR builds "local" regression model from calibration data which looks 

most like the unknown.
Chemometric model developed by Eigenvector Research IncChemometric model developed by Eigenvector Research, Inc.
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Locally Weighted Regression Models

1. Given PCA model of all calibration 
data and an unknown sample, 
select the 60 calibration samples 
closest to the unknown (green

4

5

closest to the unknown (green 
samples). 

2. Use ONLY these samples to build 
Principal Component Regression 
model (from whole-data scores)
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Calibration Results 
PLS vs. LWR
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Compositions of S109 Feed Simulants Used in 
Acceptance Tests 

 
Early Feed Late Feed 

Analyte 
M %Wt M %Wt 

Density 1.42  1.15  
OH 1.67 4.70 as NaOH 0.021 0.073 as NaOH 

TOC <0.03  <0.03  
TIC 0.61 4.55 as Na2CO3 0.24 2.21 as Na2CO3 

Al 0.52 4.32 as 
NaAl(OH)4 0.044 0.45 as 

NaAl(OH)4 
Cr 0 079 0 92 as Na2CrO4 0 018 0 26 as Na2CrO4Cr 0.079 0.92 as Na2CrO4 0.018 0.26 as Na2CrO4
Fe 0.0001  <0.00002  
K 0.026  0.009  
Na 7.87 12.75 2.62 5.24 
P 0.025  0.052  
S 0.13  0.17  
Si 0.0005  <0.0002  
F <0.016  0.098  

Acetate NA  NA  
Cl 0.08 0.33 as NaCl 0.009 0.051 as NaCl

NO2 0.86 4.18 as NaNO2 0.073 0.44 as NaNO2 
NO3 3.98 23.82 as NaNO3 1.59 11.75 as NaNO3 
PO4 0.025 0.29 as Na3PO4 0.055 0.78 as Na3PO4 
SO4 0 14 1 40 as Na2SO4 0 17 2 10 as Na2SO4
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SO4 0.14 1.40 as Na2SO4 0.17 2.10 as Na2SO4
Oxalate <0.031  0.011  

Cs (µg/mL) 2.3  0.23  

 



Chemometric Prediction of Component 
Concentrations for S109 Feed Simulants
Chemometric Prediction of Component 
Concentrations for S109 Feed Simulants

 

Saltpred %Wt Prediction 

Analyte 
%Wt 

Analytical Average 
Absolute 

Range 

Relative
Error 

% 

Absolute 
Deviation 

%Wt 

Detection 
Limit 

%Wt (M) Acceptance Test Acceptance Test 
Criteria:Criteria:
20% l ti20% l tiA) Early Feed, Total of 2028 Measurements 

NaOH 4.70 4.85 (0.25) 3.8 – 5.9 3.2 0.15 0.38 (0.09) 
Na2CO3 4.55 5.02 (0.13) 4.4 – 5.4 10 0.47 0.093 (0.009) 

NaAl(OH)4 4.32 4.72 (0.11) 4.4 – 5.1 9.3 0.40 0.30 (0.025) 

N C O 0 92 0 96 (0 02) 0 92 0 99 4 3 0 04 0 021 (0 001)

20% relative error or 20% relative error or 
0.5% absolute error0.5% absolute error

Two solutions of Two solutions of 
t itit itiNa2CrO4 0.92 0.96 (0.02) 0.92 – 0.99 4.3 0.04 0.021 (0.001) 

NaNO2 4.18 4.22 (0.04) 4.1 – 4.3 1.0 0.04 0.19 (0.03) 

NaNO3 23.82 23.47 (0.17) 23.0 – 24.0 1.5 - 0.35 0.033 (0.004) 

Na3PO4 0.29 0.35 (0.04) 0.21 – 0.64 21 0.06 0.29 (0.02) 

N SO 1 40 1 43 (0 01) 1 4 1 5 2 1 0 03 0 047 (0 003)

extreme compositions extreme compositions 
were testedwere tested

Test included real time Test included real time 
l ti f 2800l ti f 2800Na2SO4 1.40 1.43 (0.01) 1.4 – 1.5 2.1 0.03 0.047 (0.003) 

Na 12.75 12.87 (0.04) 12.8 – 13.0 1.0 0.12  

B) Late Feed, Total of 779 Measurements 

NaOH 0.073 0.0 (0.29) 0.0 – 1.1  - 0.073 0.38 (0.09) 
Na2CO3 2.21 2.31 (0.04) 2.2 – 2.5 4.5 0.10 0.093 (0.009) 

evaluation of ~2800 evaluation of ~2800 
independent independent 
measurements measurements 
collected over 24 h time collected over 24 h time 
i t li t l3

NaAl(OH)4 0.45 0.41 (0.03) 0.28 – 0.52 8.9 - 0.04 0.30 (0.025) 

Na2CrO4 0.26 0.19 (0.01) 0.17 – 0.29 27 - 0.07 0.021 (0.001) 

NaNO2 0.44 0.33 (0.02) 0.23 – 0.41 25 - 0.11 0.19 (0.03) 

NaNO3 11.75 11.89 (0.10) 11.4 – 12.3 1.2 0.14 0.033 (0.004) 

intervalinterval

Acceptance test criteria Acceptance test criteria 
metmet

23

3
Na3PO4 0.78 0.75 (0.05) 0.20 – 1.2 3.8 - 0.03 0.29 (0.02) 

Na2SO4 2.10 2.0 (0.02) 2.0 – 2.3 4.8 - 0.10 0.047 (0.003) 

Na 5.24 5.38 (0.10) 3.9 – 5.9 2.7 0.14  
 



Field Manifold Verification Test

Compare field manifold system with laboratory system
Assemble combined flow systemAssemble combined flow system
Connect combined flow system with pump and 55 gallon 
feeding/receiving reservoir 
Connect laboratory instruments and field instruments to 
i d d t d t i iti t d tindependent data acquisition systems and computers

Verify of the electronic components
Compare instrument performance

using 5 wt% NaNO3 solutionusing 5 wt% NaNO3 solution
continuously changing the composition of the test solution

Test chemometric models using data independently collected by 
laboratory and field systemslaboratory and field systems
Test software for the data acquisition, processing, storage, and 
archival
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Assembled Process monitor manifoldAssembled Process monitor manifold

Hydro-
Cyclone 

Filter

Valve to 
Shielded 

Tank System

Coriolis Raman

Valve to 241-SY-101

Coriolis 
Flow 
Meter

Raman 
Probe Valve for 

Raw Water 
Supply

C
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Conductivity 
Probe

Isolation Valves 



Field Manifold Verification Test
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Field Manifold Verification Test Results

Field unit calibrated using previously calibrated laboratory 
itunit

Field system instrumental performance was  comparable 
t l b t tto laboratory system

Composition change of test solutions was successfully p g y
monitored by both systems

Software performed equally well for field and laboratorySoftware performed equally well for field and laboratory 
systems 
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Schematic presentation of the software Schematic presentation of the software 
computer displaycomputer display

Retrieval SummaryCurrent ValuesCurrent Retrieval Composition,

computer displaycomputer display

y
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On-Line Monitoring for Control and 
Safeguarding of Radiochemical Streams at 
S F l R i PlSpent Fuel Reprocessing Plant
Application of past on-line process monitoring experience to UREX 
flowsheet 

Spectroscopic measurements of selected fuels and fuel simulants

Evaluation of detection limits

Initial development of quantitative PLS models for U Pu and NpInitial development of quantitative PLS models for U, Pu, and Np

Demonstration of process monitoring using commercial fuel

Instrumentation of a centrifugal contactor system with Raman and vis-NIR 
spectroscopic probes 



Approach: 
Online Spectroscopic MeasurementsOnline Spectroscopic Measurements

Raman measurements of
A ti id id iActinide oxide ions 
Organics: solvent components and complexants
Inorganic oxo-anions (NO3

-, CO3
2-, OH-, SO4

2-, etc)
Water acid (H+) base (OH-)Water, acid (H+), base (OH )

UV-vis-NIR measurements of
trivalent and tetravalent actinide and lanthanide ionstrivalent and tetravalent actinide and lanthanide ions

Potential Uses
Process monitoring for safeguards verification (IAEA)Process monitoring for safeguards verification (IAEA)
Process control (operator)

Previous Experience: Hanford Sitep
Real-time, online monitoring of high-level nuclear waste
Raman spectroscopy, flow, temperature, conductivity, density



Process Monitoring Can Be Achieved Through-
out the Flowsheet

dissolved fuel

Global vision:
UREX U

Tc
Process monitoring/control 
at various points in 
flowsheet is feasible

CCD-PEG

NPEX

Cs/Sr

Np/Pu

Every flowsheet contains 
Raman and/or UV-vis-NIR 
active species

TRUEX FPs

active species

Coriolis and conductivity 
instruments can be used on

Cyanex 301 Am/Cm

instruments can be used on 
all process streams

rare earths Monitoring Is Not Flowsheet Specific



Methodology for on-line process monitor 
development: 
from proof of concept to final outputfrom proof-of-concept to final output

Static measurements:
Model training database

Chemometric model 
development

On-line model 
verification and
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Raman Spectroscopy for Monitoring Uranyl 
and Nitrate ions
Raman spectroscopy  allows for 
quantification of UO2

2+ and NO3
- in aqueous 

and organic phases
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Vis-NIR spectra of variable Pu(IV) in fuel feed 
simulant

Pu(IV) concentration can be quantified over wide range of 
process chemistry conditions
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Vis-NIR spectra of Np(V) and Np(VI) in fuel 
feed simulant

Np(V) and Np(VI) concentration can be quantified 
over wide range of process chemistry conditions
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Chemometric PLS models for quantitative analysis:
Pu(IV), Np(V) and UO2

2+ (Raman and vis-NIR)

Use Static spectral database for process monitor model development
Linear fit with slope = 1 indicates agreement between actual and predicted

Pu chemometric model
PLS model for Pu(IV) using UV-vis data

12

Pu model       

Linear fit with slope = 1 indicates agreement between actual and predicted
values, and successful model performance 

1 4
UO2 model     Np(V) chemometric model

0 5

Np(V) model   

y = 0.9997x + 0.0006
R2 = 0.9999

8

10

12

ct
ed

od
el

  
y = 0.9986x + 0.0008

R2 = 0.9986

1.0

1.2

1.4

od
el

el
   

y = 0.990x + 0.003
R2 = 0.990

0.4

0.45

0.5

edod
el

y = 0.990x + 0.003
R2 = 0.990

4

6

Pu
(IV

), 
m

M
 p

re
di

c
u(

IV
)],

 m
M

, m
o

0 4

0.6

0.8

U
O

22+
], 

M
 m

o
U

O
22+

], 
M

, m
od

e

0.3

0.35

[N
p(

V)
], 

 M
 p

re
di

ct
e

N
p(

V
)],

 m
M

, m
o

0

2

0 2 4 6 8 10 12

[P
u

0.0

0.2

0.4

0 0 4 0 8 1 2

[U[U

0.2

0.25

0.2 0.25 0.3 0.35 0.4 0.45 0.5

[N

37

Pu(IV), mM[Pu(IV)], mM
0 0.4 0.8 1.2

[UO2
2+], M[UO2
2+], M

[Np(V)],  M[Np(V)], mM



Proof-of-Concept : 
Applicability of spectroscopic methods for 
commercial BWR fuel measurementscommercial BWR fuel measurements

Commercial fuels available at PNNL for demonstration
ATM-105, BWR, Cooper Nuclear Power Plant; 18 MWd/kg; low burnup
ATM-109, BWR, Quad Cities I reactor; 70 MWd/kg; high burnup

Fuel dissolved in HNO3
Feed adjusted to 5 nitric acid strengths (0.5 to 5M) and 0.7M U(VI)

Performed batch contact on each aqueous feed with 30 vol% TBP-dodecane
Feed, Organic, Raffinate phases 

successfully measured by 
Raman, Vis-NIR

Excellent Agreement between ORIGENExcellent Agreement between ORIGEN
code, spectroscopic, and analytical 
measurement 

ATM-109 Nd Np U Pu
ORIGEN 1.1E-02 4.6E-04 7.2E-01 7.5E-03
ICP-MS 8.4E-03 4.7E-04 7.2E-01 9.0E-03
Spectroscopic 5.4E-03 3.0E-04 7.3E-01 9.6E-03
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Spectroscopic 5.4E 03 3.0E 04 7.3E 01 9.6E 03
ORIGEN / ICP ratio 1.3 1.0 1.0 0.8
ORIGEN / Spectroscopic 1.9 1.5 1.0 0.8



Examples of Vis-NIR spectra: 
BWR Fuel Feed and TBP/dodecane extraction phase
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Blue - Simlant feed  extract



Raman spectra of High-Burnup BWR Fuel, 
ATM-109

Aqueous phase:
ATM 109 feed raffinate and simulant

TBP/dodecane phase:
ATM 109 f l d i l t
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Flow Testing with PNNL’s Solvent 
Extraction Test Apparatus (SETA)

 Sixteen 2-cm centrifugal contactors 
 Instrumented with Raman and UV VIS NIR spectroscopic probes

pp ( )

 Instrumented with Raman and UV-VIS-NIR spectroscopic probes
 Computer-controlled operation 
 Vessels mounted on balances  accurate tracking of material flow 
 Instrumentation ports, connections points  long-range flexibility
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PNNL’ s centrifugal contactors can be additionally instrumented 
to support instrumentation evaluation and modeling validation



Cold run of centrifugal contactors:  
Test on-line Raman and Vis-NIR instrumentation

Cold test conditions

•centrifugal contactors;  2-cm, 
3600 rpm
•Aqueous phase: 12 ml/min
•Organic phase: 18 ml/min

ID HNO3, M NO3, M Nd, mM
Soln 1 0 1 0 1 0

Aqueous Phase

•Organic phase:  18 ml/min

Aqueous feed

Soln 1 0.1 0.1 0
Soln 2 0.1 0.6 2
Soln 3 0.1 1.1 5
Soln 4 0.1 2.6 10
Soln 5 0.1 4.1 14

30%TBP/dodecane
Organic Phase

Spectroscopic monitoring ofSpectroscopic monitoring of 
Raffinate stream only



Raman spectra of Solutions 1-5 
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Raman process monitor spectral response of 
Raffinate streamRaffinate stream 

C ld t t l tiCold test solutions

ID HNO M NO M Nd M
Aqueous PhaseAqueous feed

Soln 5

Nitrate band at 1050 cm-1

ID HNO3, M NO3, M Nd, mM
Soln 1 0.1 0.1 0
Soln 2 0.1 0.6 2
Soln 3 0.1 1.1 5
Soln 4 0.1 2.6 10

Soln 3

Soln 4
O-H region at  3000-4000 cm-1

Soln 5 0.1 4.1 14

30%TBP/dodecane
Organic PhaseSoln 1

Soln 2

Soln 3

wash

Wavenumber (cm-1)



PLS model results of Raman and Visible Process 
Monitoring of Centrifugal Contactor Raffinateg g

Raman Process Monitor, Centrifugal Contactor
Aqueous phase 0.1M HNO3, variable NaNO3/Nd(NO3)3; organic phase TBP/dodecane
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Batch contact distribution experiment for Nd(NO3)3
in variable Nitrate with TBP/dodecane
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Centrifugal Contactor System Instrumented with 
Raman and VIS-NIR Spectroscopic Probes 

Fiber optics forFiber optics for 
UV/Vis and NIR

t if l t t

Raman Probes R I t

glove port
cover

centrifugal contactors 
installed within glovebox

47

Raman Probes Raman Input 
fiber optics



Flow Test: 
Raman and VIS-NIR Monitoring of Fuel Simulantsg

Raman data VIS-NIR dataVIS NIR data

Np(VI) band at 1220 nm

Np(V) band at 980 nm

Nitrate band at 1050 cm‐1

O‐H region at  3000‐4000 cm‐1

UO2
2+ band at 

871 cm‐1

HNO3 ‐4

HNO3 ‐5

HNO3 ‐6

UO 6

HNO3 ‐1

HNO3 ‐2

HNO3 ‐3

UO2‐1

UO2‐2
UO2‐3

UO2‐4
UO2‐5

UO2‐6

Data collected on-line in real-time using running contactor

wash
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Data collected on-line in real-time using running contactor 
system
Feed contains variable Np(V, VI), HNO3 and UO2(NO3)2



Chemometric model translation to flow test: 
Agreement between Measured and Predicted Raman on-
line measurementsline measurements

PLS model developed on static measurements successfully predict 
concentrations of U(VI) HNO and nitrate under flow conditions in real time

Fuel Feed Simulant, M

concentrations of U(VI), HNO3, and nitrate under flow conditions in real-time

0.88

Predicted Concentrations from Process Raman Spectroscopy
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Conclusions

Methods: Using simulants and BWR Spent Fuel
C fi d lidit f PNNL’ h t i d li h i b thConfirmed validity of PNNL’s chemometric modeling approach using both 
static and flow testing
Demonstrated Raman spectroscopy for on-line monitoring of U(VI), nitrate, 
and HNO3 concentrations, for both aqueous and organic phases 3 , q g p
Demonstrated Vis/NIR for on-line monitoring of Np, Pu, Nd 

Testing Facility: PNNL’s Centrifugal Contactor Apparatus 
Glovebox installation of 16 spectroscopically instrumented centrifugalGlovebox installation of 16 spectroscopically instrumented centrifugal 
contactors
Performance of equipment (contactor and spectroscopic) verified

Technical Challenges g
Demonstrate applicability of outlined approach for complex simulants and 
commercial fuels on-line

interferences from fission products and optically active species
range of fuel types and flowsheets
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