Nanoscale Tantalum Oxide Based Catalysts for PEM Fuel Cell Applications

2010 TMS Annual Meeting Feb. 18, 2010

Jin Yong Kim, Tak-Keun Oh, Yongsoon Shin, Scott Weil

Sponsor: PNNL Lab-Fellow LDRD Project

Outline

Background

- Critical issues in PEM fuel cells
- Nanoscale Ta Oxide/Carbon Composite

Results

- Effect of W addition on Electrochemical Performance
- XPS results

Summary

Proton Exchange Membrane Fuel Cells (PEMFCs)

Recent Cost Analyses

2007 DOE (EERE) Hydrogen Program Review

ABORATORY

~30% of the cost of a FC system is directly attributable to the Pt catalysts!

Development of non-Pt based catalysts is critical for the commercialization.

Why Ta Oxide?

Summary of Previous Results

- High oxygen reduction potential comparable to Pt
- Stable under corrosive environments
- But, Reduction current was limited due to poor electrical conductivity (limited reaction sites, TPB's)
- Sputtering of nanoscale Ta oxide was used for feasibility tests to increase the TPB density.
- The sputtered nanoscale Ta Oxide displayed ~ 1/3 of the mass specific current density of Pt at 60°C and 80°C, even though the area specific current density was limited due to the 2-D structure.

Nanoscale Ta Oxide/Carbon Composite

<u>Ta-oxide powder</u>

Material Synthesis: Direct Synthesis

Dried at 60°C under vacuum
Ball-milling for 15 min

- No precursor modification and surfactant needed
- Ta₂O₅ particles nucleate on functionalized carbon surface and are distributed homogeneously.
- The covalent bonds b/w Ta₂O₅ and carbon are formed *in-situ* during the process.

FTIR Analysis

Sample ID	carbon	Ta205 ,Carbon	Wt% (Ta2O5)	Carbonyl vibration (cm ⁻¹)
TC014	A5348R	1.71	63	1635
TC015	A5348R	3.42	77	1635
TC016	F1-A5348R	1.71	63	1624
TC017	F1-A5348R	3.42	77	1630
TC018	F2-A5348R	1.71	63	1633
TC019	F2-A5348R	3.42	77	1633

- Direct synthetic process showed strong Ta-O stretching vibration peaks at 520-780 cm⁻¹
- The carbonyl bonds around 1630 cm⁻¹ indicate covalent bonds of Ta₂O₅ on the carbon surface

Pacific No

NATIONAL LABORATORY

Direct Synthesis: high ratio of Ta₂O₅/carbon (1.71-3.42)

Electrochemical Performance of Ta Oxide

Using a static 3-electrode half-cell setup

Reduction Current @ 0.7V vs. NHE

• **Performance:** Up to 9% of mass specific current density was achieved with 30 wt% Ta oxide @ 0.7V vs. NHE compared to a Pt catalyst (10 wt% Pt on activated carbon).

• **Issues:** A high active catalysts loading (30~50 mg/cm²) and a static electrode can underestimate catalytic activity of Pt due to diffusion limitation

• **Direct Synthetic Process:** A direct reaction between Ta ethoxide and functionalized carbon, which forms covalently bonded nanoscale Ta oxide particles nucleated on the functionalized carbon surface.

• **TEM Results:** A composite catalyst with 17 wt% Ta oxide prepared using the direct synthesis technique contains well-distributed Ta oxide particles ~20 nm in size.

Rotating Disc Electrode (RDE) Test

- Rotating disc up to 2400 rpm minimizes diffusion limitation from electrolyte to electrode.
- Temperature Control Capability

12

RDE Test Results

Solid loading (Active): ~ 0.2 mg/cm²

Voltage sweep: 5 mV/sec (1.1~0.2 V vs. NHE) @ 60°C

Mass Specific Current Density (A/g) @ 60°C

• *Pt:* small activation polarization (>0.85V), and diffusion limitation (large change in maximum current density due to rotating speed)

• Nanoscale Ta oxide: large activation polarization (>0.45V), and no diffusion limitation (small change in maximum current density due to rotating speed)

ORR Onset Potential @ 60°C

Mass Sp. Current Density @ 0.7V (60°C)

Mass Sp. Current Density @ 0.6V (60°C)

Maximum Mass Sp. Current Density (60°C)

Ta2O5 with 32 mol% W

High Energy Resolution Photoemission Spectra of the Ta 4f and Ta 5p Region

Area Specific Current Density Effect of Catalyst Loading

- With 5 times increase in loading of active catalysts, the area specific current density at 0.6V increased 4~4.5 times.
- When loaded ~5 times, the composite catalyst with 32 mol% W tested at 0.6V reached 66% at 100 rpm and 35% at 2400 rpm compared to the Pt catalyst.

Summary

- Formation of covalent bonding between Ta oxide and functionalized carbon was confirmed by FTIR.
- Electrochemical analysis of directly synthesized composites showed significant increase in both mass specific reduction current with decrease in particle size of Ta oxide.
- Addition of W to Ta oxide lead to the improvement in catalytic activity of Ta oxide.
- The best catalysts with 32 mol% W showed specific current density up to 9% at 0.6V and 35% at maximum current density at 2400 rpm compared to Pt.
- XPS analysis revealed that W exists as 6+ in the Ta oxide (5+), indicating the creation of excess oxygen in Ta oxide structure, which improves the improvement of catalytic activity of Ta oxide.
- When loaded ~5 times, the composite catalyst with 32 mol% W tested at 0.6V reached 66% at 100 rpm and 35% at 2400 rpm compared to the Pt catalyst.